

Landesanstalt für Umwelt Baden-Württemberg

Eignungsprüfung des Gaschromatographen

GCX55-601 (PID) für Benzol

Fa. Synspec B.V.

₩ LUBW-Berichtsnummer: SYN143-E01/22D

AUFTRAGGEBER	Synspec B.V.
	De Deimten 1
	NL-9747 AV Groningen
	Niederlande

BEARBEITUNG LUBW Landesanstalt für Umwelt Baden-Württemberg Postfach 100163, 76231 Karlsruhe Referat 14 – Marktüberwachung, Qualitätssicherung

BERICHTSNUMMERSYN143-E01/22DERSTELLUNGSDATUM05.04.2023BERICHTSUMFANG55 Seiten

Nachdruck - auch auszugsweise - ist nur mit Zustimmung der LUBW unter Quellenangabe und Überlassung von Belegexemplaren gestattet.

GEPRÜFTES UMWELTMANAGEMENT

0. Inhaltsverzeichnis

1	TABELLARISCHE ZUSAMMENFASSUNG DER PRÜFERGEBNISSE	5
1.1	Tabellarische Zusammenfassung der Prüfergebnisse	5
1.2	Bekanntgabevorschlag	9
2	GRUNDLAGE DER PRÜFUNG	11
3	FUNKTIONSWEISE DES GASCHROMATOGRAPHEN	13
4	PRÜFPROGRAMM	16
4.1	Laborversuche	16
4.2	Feldtest	17
5	REFERENZMESSVERFAHREN	18
6	PRÜFERGEBNISSE	19
6.1	Messwertanzeige	19
6.2	Kalibriereingang	20
6.3	Wartungsfreundlichkeit	20
6.4	Funktionskontrolle	21
6.5	Rüst- und Einlaufzeiten	21
6.6	Bauart	22
6.7	Unbefugtes Verstellen	23
6.8	Messsignalausgang	23
6.9	Digitale Schnittstelle	24
6.10	Datenübertragungsprotokoll	24
6.11	Messbereich	25
6.12	Negative Messsignale	25
6.13	Stromausfall	26
6.14	Gerätefunktionen	26
6.15	Umschaltung	27
6.16	Gerätesoftware	28
6.17	Kurzzeitdrift	29
6.18	Wiederholstandardabweichung	30

6.19	Abweichung von der Linearität bei der Kalibrierfunktion (Lack-of-fit)	31
6.20	Empfindlichkeitskoeffizient des Probengasdruckes	35
6.21	Empfindlichkeitskoeffizient der Umgebungslufttemperatur	37
6.22	Empfindlichkeitskoeffizient der elektrischen Spannung	39
6.23	Querempfindlichkeiten	41
6.24	Verschleppen (Memory-Effekt)	43
6.25	Langzeitdrift	44
6.26	Vergleichsstandardabweichung unter Feldbedingungen	47
6.27	Kontrollintervall	49
6.28	Verfügbarkeit	50
6.29	Gesamtmessunsicherheit	51

1 Tabellarische Zusammenfassung der Prüfergebnisse

1.1 Tabellarische Zusammenfassung der Prüfergebnisse

Mindestanforderung	Anforderung	Prüfergebnis	Anford. erfüllt	Prüf- datum
Messwertanzeige	Muss vorhanden sein.	Messwertanzeige ist vorhanden.	Ja	2022
Wartungsfreundlichkeit	Wartungsarbeiten sollten ohne größe- ren Aufwand möglichst von außen durchführbar sein.	Gerät benötigt grundsätzlich keine Wartungsarbeiten.	Ja	2022
Funktionskontrolle	Spezielle Einrichtungen hierzu sind als zum Gerät gehörig zu betrachten, bei den entsprechenden Teilprüfungen ein- zusetzen und zu bewerten.	Die geprüften Geräte besitzen keine Einrichtungen für eine interne Funkti- onskontrolle. Prüfung entfällt.		2022
Rüst- und Einlaufzeiten	Die Rüst- und Einlaufzeiten der Mess- einrichtung sind in der Betriebsanleitung anzugeben.	Die Betriebsanleitung enthält detail- lierte Angaben zur Inbetriebnahme des Gerätes. Hinweise zur Rüst- und Einlaufzeiten sind vorhanden.	Ja	2022
Bauart	Die Betriebsanleitung muss Angaben des Herstellers zur Bauart der Messein- richtung enthalten.	Angaben zur Bauart sind in der Be- triebsanleitung vorhanden.	Ja	2023
Unbefugtes Verstellen	Die Messeinrichtung muss eine Siche- rung gegen unbefugtes Verstellen ent- halten.	Passwortschutz ist vorhanden.	Ja	2022
Messsignalausgang	Messsignale müssen digital und/oder analog angeboten werden.	Messsignale, Statussignale sowie Fehlermeldungen können über eine serielle Schnittstelle ausgelesen wer- den.	Ja	2022
Digitale Schnittstelle	Es ist zu prüfen, ob die digitale Schnitt- stelle die Übertragung der Messsignale, Statussignale und Informationen wie Gerätetyp, Messbereich, Messkompo- nente und Einheit erlaubt. Weiterhin ist zu prüfen, ob die digitale Schnittstelle vollständig im einschlägigen Normen- und Richtlinienwerk beschrieben ist.		Ja	2022
Datenübertragungs- protokoll	Falls die Messsignale des Messgeräts digital übertragen werden, ist zu über- prüfen, ob das Messgerät mindestens über ein Datenübertragungsprotokoll verfügt.	Die Messsignale konnten mittels "Bay- ern-Hessen-Datenprotokoll" auf einen Stationsrechner übertragen werden. Dies wurde während des Feldtests überprüft; es wurde eine Übereinstim- mung zwischen den übertragenen Da- ten und den im Gerät gespeicherten Daten festgestellt.	Ja	2022
Messbereich	Der Messbereichsendwert muss größer oder gleich der oberen Grenze des Zer- tifizierungsbereiches sein.	Ser Hersteller gibt keinen Messbe- reichsendwert an. Während der Prü- fung wurden Konzentrationen aufge- geben, die einen Messbereich von 50 μg/m³ abdecken.		2022
Negative Messsignale	Dürfen nicht unterdrückt werden (leben- der Nullpunkt).	Das Messgerät ist verfahrensbedingt nicht mit einem lebenden Nullpunkt ausgestattet.		2022

Mindestanforderung	Anforderung	Prüfergebnis	Anford. erfüllt	Prüf- datum
Stromausfall	Unkontrolliertes Ausströmen von Be- triebs- und Kalibriergas muss unterbun- den sein; Geräteparameter müssen ge- gen Verlust durch Pufferung geschützt sein; messbereiter Zustand muss bei Spannungswiederkehr gesichert sein, Messung muss fortgesetzt werden.	Die Zufuhr des Betriebsgases (N ₂) wird bei einem Stromausfall gestoppt. Ge- räteparameter bleiben gespeichert. Nach Spannungswiederkehr fährt der Rechner das Betriebssystem automa- tisch hoch und startet den Messbe- trieb.	Ja	2022
Gerätefunktion	Müssen durch telemetrisch übermittel- bare Statussignale zu überwachen sein.	Statussignale sowie Fehlermeldungen können über eine serielle Schnittstelle übertragen werden	Ja	2023
Umschaltung	Umschaltung zwischen Messung und Funktionskontrolle und/oder Kalibrie- rung muss telemetrisch auslösbar sein	Die geprüften Geräte besitzen keine Einrichtungen zur Prüfgaserzeugung, sodass eine interne Funktionskontrolle nicht vorgesehen ist.		
Gerätesoftware	Die Version der Gerätesoftware muss vom Messgerät angezeigt werden kön- nen.	Die aktuelle Software-Version für die Steuerung des Gaschromatographen kann angezeigt werden: <u>Software zur GC-Steuerung:</u> Version 6.4.2.19	Ja	2023
Kurzzeitdrift (Anforderung der DIN EN 14662-3)	Die Kurzzeitdrift D _{s,s} am Prüfwert 2 muss unter Laborbedingungen über eine Driftperiode von 12 h kleiner oder gleich 2,0 µg/m³ sein.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ja	2022
Wiederholstandardabwei- chung am Prüfwert 1 (Anforderung der DIN EN 14662-3)	Die Wiederholstandardabweichung s _{r,z} am Prüfwert 1 muss kleiner oder gleich 0,20 µg/m³ sein.	$\begin{array}{l} \mbox{Die Wiederholstandardabweichung $s_{r,z}$} \\ \mbox{bei Aufgabe von Prüfgas am Prüf-} \\ \mbox{wert 1 wurde ermittelt zu:} \\ \mbox{GC 80001:} $s_{r,z} = 0,01 \ \mu g/m^3 \\ \mbox{GC 80004:} $s_{r,z} = 0,01 \ \mu g/m^3 \end{array}$	Ja	2022
Wiederholstandardabwei- chung am Jahresgrenzwert (Anforderung der DIN EN 14662-3)	Die Wiederholstandardabweichung s _{r,ct} am Jahresgrenzwert muss kleiner oder gleich 0,25 µg/m³ sein.	$\begin{array}{l} \mbox{Die Wiederholstandardabweichung $s_{r,ct}$} \\ \mbox{bei Aufgabe von Prüfgas im Bereich} \\ \mbox{des Jahresgrenzwertes wurde ermittelt} \\ \mbox{zu:} \\ \mbox{GC 80001:} \\ \mbox{$s_{r,ct}$} = 0.02 \ \mu g/m^3 \\ \mbox{GC 80004:} \\ \mbox{$s_{r,ct}$} = 0.02 \ \mu g/m^3 \end{array}$	Ja	2022
Linearität (Lack-of-fit) (Anforderung der DIN EN 14662-3)	Das Residuum r_z am Nullpunkt muss kleiner oder gleich 0,5 µg/m ³ sein und das größte relative Residuum r_{max} aus der linearen Regressionsfunktion muss kleiner oder gleich 5 % sein.	Das Residuum r_z am Nullpunkt wurde ermittelt zu:GC 80001: $r_z = 0.5 \ \mu g/m^3$ GC 80004: $r_z = 0.3 \ \mu g/m^3$ Das größte relative Residuum r_{max} wurde ermittelt zu:GC 80001: $r_{max} = -2,1 \ \%$ GC 80004: $r_{max} = -3,0 \ \%$	Ja	2022
Empfindlichkeitskoeffizient des Probengasdrucks (Anforderung der DIN EN 14662-3)	Der Empfindlichkeitskoeffizient b _{gp} für den Einfluss des Probengasdrucks am Prüfwert 2 muss kleiner oder gleich 0,10 (µg/m³)/kPa sein.	Der Empfindlichkeitskoeffizient b_{gp} für den Einfluss des Probengasdrucks wurde ermittelt zu: GC 80001: $b_{gp} = 0,07 (\mu g/m^3)/kPa$ GC 80004: $b_{gp} = 0,06 (\mu g/m^3)/kPa$	Ja	2022

Mindestanforderung	Anforderung	Prüfergebnis		Prüf- datum
Empfindlichkeitskoeffizient der Umgebungslufttemperatur (Anforderung der DIN EN 14662-3)	Der Empfindlichkeitskoeffizient b _{st} für den Einfluss der Umgebungslufttempe- ratur am Prüfwert 2 muss kleiner oder gleich 0,08 (µg/m³)/K sein.	 Der Empfindlichkeitskoeffizient b_{st} für den Einfluss der Umgebungslufttemperatur bei Aufgabe von Prüfgas am Prüfwert 2 wurde ermittelt zu: GC 80001: b_{st} = 0.03 (μg/m³)/K 		2022
Empfindlichkeitskoeffizient der elektrischen Spannung (Anforderung der DIN EN 14662-3)	Der Empfindlichkeitskoeffizient b _V für den Einfluss der elektrischen Spannung am Prüfwert 2 muss kleiner oder gleich 0,08 (μg/m³)/V sein.	Der Empfindlichkeitskoeffizient b_V für den Einfluss der elektrischen Span- nung bei Aufgabe von Prüfgas am Prüfwert 2 wurde ermittelt zu: GC 80001: $b_V = 0,001 (\mu g/m^3)/V$ GC 80004: $b_V = 0,002 (\mu g/m^3)/V$	Ja	2022
Einfluss von Wasserdampf (Anforderung der DIN EN 14662-3)	Der Einfluss der Störung im Bereich des Jahresgrenzwertes durch Wasserdampf b _{H2O,ct} muss kleiner oder gleich 0,015 (µg/m³)/(mmol/mol) sein.	$\begin{array}{l} \label{eq:constraint} \text{Der Empfindlichkeitskoeffizient } b_{\text{H2O}} \\ \text{für den Einfluss der Störung durch} \\ \text{Wasserdampf bei Aufgabe von Prüf-} \\ \text{gas im Bereich des Jahresgrenzwer-} \\ \text{tes wurde ermittelt zu:} \\ \text{GC 80001:} \\ b_{\text{H2O,ct}} = 0,012 \ (\mu g/m^3)/(\text{mmol/mol}) \\ \text{GC 80004:} \\ b_{\text{H2O,ct}} = -0,006 \ (\mu g/m^3)/(\text{mmol/mol}) \end{array}$		2022
Einfluss von organischen Verbindungen (Anforderung der DIN EN 14662-3)	Juss von Verbindungen der I 14662-3)Der Beitrag des Gemischs aus organi- schen Verbindungen Δx_{oc} zum Mess- signal von Benzol bei einer Konzentra- tion im Bereich des Jahresgrenzwertes muss kleiner oder gleich 0,25 µg/m³ sein.Der Beitrag des Gemischs aus organi- schen Verbindungen Δx_{oc} wurde er- mittelt zu: GC 80001: $\Delta x_{oc} = -0,09 µg/m³$ GC 80004: $\Delta x_{oc} = -0,03 µg/m³$		Ja	2022
Verschleppen (Memory-Effekt) (Anforderung der DIN EN 14662-3)	Verschleppen (Memory-Effekt) (Anforderung der DIN EN 14662-3)Die Benzolkonzentration der ersten Nullgasanalyse, die direkt auf die Ana- lyse am Prüfwert 3 folgt, muss kleiner o- der gleich 1,0 μ g/m³ sein.Als Mittelwert c _m der ersten Null- gasanalyse wurden folgende Werte ermittelt: GC 80001: c _m = 0,1 μ g/m³ GC 80004: c _m = 0,3 μ g/m³		Ja	2022
Langzeitdrift (Anforderung der DIN EN 14662-3)	Beim Feldtest muss über eine Driftperi- ode von 14 Tagen der größte Wert der Langzeitdrift $D_{l,z}$ am Nullpunkt kleiner oder gleich 0,5 µg/m ³ sein und der größte Wert der Langzeitdrift $D_{l,s}$ am Prüfwert 2 muss kleiner oder gleich 10 % sein.	$eq:linear_line$	Ja	2023
Vergleichsstandard- abweichung unter Feldbedingungen (Anforderung der DIN EN 14662-3)	Die Vergleichsstandardabweichung un- ter Feldbedingungen s _{r,f} der beiden Messeinrichtungen muss kleiner oder gleich 0,25 µg/m³ sein.	Die Vergleichsstandardabweichung unter Feldbedingungen $s_{r,f}$ der beiden Messeinrichtungen wurde ermittelt zu: $s_{r,f} = 0,17 \ \mu g/m^3$	Ja	2023
Kontrollintervall	Sollte möglichst 3 Monate, jedoch min- destens 14 Tage betragen.	Das Kontrollintervall wird auf drei Mo- nate festgesetzt.	Ja	2023

Mindestanforderung	Anforderung	Prüfergebnis	Anford. erfüllt	Prüf- datum
Verfügbarkeit	Die Verfügbarkeit muss mindestens 90 % betragen.	Die Verfügbarkeit wurde ermittelt zu: GC 80001: 100 % GC 80004: 100 %	Ja	2023
Gesamtmessunsicherheit	Der ermittelte Wert darf die Vorgaben der EU-Tochterrichtlinien zur Luftquali- tät nicht überschreiten. Für Benzol muss die relative erweiterte Messunsi- cherheit kleiner oder gleich 25 % sein.	Der ermittelte Wert für die relative er- weiterte Messunsicherheit W beträgt: GC 80001: W = 15,1 % GC 80004: W = 12,5 %	Ja	2023

- Prüfwert 1: 1/10 des Grenzwertes = 0,5 µg/m³
- Prüfwert 2: Referenzpunkt = 70 80 % des Höchstwerts des Zertifizierungsbereichs von Benzol
- Prüfwert 3: Referenzpunkt = 90 % des Höchstwerts des Zertifizierungsbereichs von Benzol
- Grenzwert: Jahresgrenzwert von Benzol = $5 \mu g/m^3$

1.2 Bekanntgabevorschlag

Aufgrund der erzielten positiven Ergebnisse wird folgende Empfehlung für die Bekanntgabe als eignungsgeprüfte Messeinrichtung ausgesprochen:

Messeinrichtung:

Gaschromatograph GCX55-601 Ausführung PID

Hersteller:

Synspec B.V., Groningen, Niederlande

Eignung:

Für die kontinuierliche Erfassung von Benzol-Immissionskonzentrationen in der Außenluft im stationären Einsatz.

Messbereiche in der Eignungsprüfung:

Komponente	Zertifizierungsbereich	Einheit
Benzol	0 – 50	µg/m³

Softwareversion:

6.4.2.19

Einschränkungen:

keine

Hinweise:

- 1. Das Messgerät ist verfahrensbedingt nicht mit einem lebenden Nullpunkt ausgestattet.
- 2. Der Prüfbericht über die Eignungsprüfung ist im Internet unter <u>www.qal1.de</u> einsehbar.

Prüfbericht:

Landesanstalt für Umwelt Baden-Württemberg (LUBW), Karlsruhe Bericht-Nr. SYN143-E01/22D vom 05. April 2023

Für die Prüfung und Berichterstellung zuständige Person

11.04.2023

Dr. Justyna Homa

Signiert von: Homa (LUBW)

Freigabe des Prüfberichtes

11.04.2023

X Michael Maban

Michael Maban Sachgebietsleiter / Fachlich Verantwortlicher Signiert von: Maban (LUBW)

2 Grundlage der Prüfung

Die LUBW wurde von der Firma Synspec B.V. mit Schreiben vom 31.08.2020 beauftragt den Gaschromatographen GCX55 Ausführung FID auf seine Eignung zur Messung von Immissionskonzentrationen von Benzol zu prüfen.

Aufgrund der Corona-Pandemie konnte mit den Prüfungen erst im August 2022 begonnen werden.

Dazu wurden der LUBW von der Firma Synspec B.V. zwei Gaschromatographen mit den folgenden Seriennummern zur Verfügung gestellt:

- GC 1: 80001 (nachfolgend als GC 80001 bezeichnet)
- GC 2: 80004 (nachfolgend als GC 80004 bezeichnet)

Die Prüfungen wurden gemäß den Vorgaben der folgenden Richtlinien und Normen durchgeführt:

VDI-Richtlinie 4202 Blatt 1 (April 2018)

Automatische Messeinrichtung zur Überwachung der Luftqualität – Eignungsprüfung, Eignungsbekanntgabe und Zertifizierung von Messeinrichtungen zur punktförmigen Messung von gasförmigen Immissionen.

DIN EN 14662-3 (Februar 2016)

Außenluft – Messverfahren zur Bestimmung von Benzolkonzentrationen – Teil 3: Automatische Probenahme mit einer Pumpe und gaschromatographische In-situ-Bestimmung.

Prüfling:

Gaschromatograph GCX55-601 Ausführung PID (Serien-Nr. 80001 bzw. 80004)

In den Abb. 2.1 und Abb. 2.2 ist die Front- und die Rückansicht des GCX55 zu sehen.

Abb. 2.1: Frontansicht des Gaschromatographen

Abb. 2.2: Rückansicht des Gaschromatographen

3 Funktionsweise des Gaschromatographen

Der Gaschromatograph GCX55 ist der Nachfolger des GC955 und wurde für die quasikontinuierliche Messung von organischen Luftschadstoffen entwickelt. Er erlaubt die Erfassung von niedrigen ppb-Konzentrationen beispielsweise von Benzol, Toluol, Ethylbenzol, m/p-Xylol und o-Xylol in der Umgebungsluft.

Der GCX55 verfügt über eine Probenanreicherung der zu überwachenden Kohlenwasserstoffe aus dem Messgas. Am Anfang jeder Probenahme werden die Messgasleitungen mittels einer Bypass-Pumpe gespült. Anschließend wird das Messgut mit Hilfe eines Probenahmezylinders gezogen auf einem Anreicherungsröhrchen gesammelt. Sobald genügend Probe vorhanden ist, wird das Röhrchen erhitzt und die Komponenten thermisch desorbiert. Das Röhrchen wird dabei vom Trägergas (Stickstoff) im Gegenstrom durchströmt. Die organischen Verbindungen gelangen in eine Trennsäule, die aus zwei Teilen besteht: einer Strippersäule und einer Analysensäule. In der Strippersäule beginnen sich die Komponenten zu trennen - die Komponenten mit den niedrigsten Siedepunkten gelangen zuerst in die Analysensäule. Nachdem alle interessierenden Komponenten die Strippersäule verlassen haben, wird diese durch Umschalten des 10-Wege-Ventils in Gegenrichtung von nicht interessierenden Komponenten freigespült. Auf diese Weise kann eine kurze Analysenzeit realisiert werden (15 Minuten), weil nicht auf die Elution von allen Verbindungen gewartet werden muss.

Das eigentliche Messgut wird von einem Photoionisationsdetektor (PID) quantifiziert. Im Photoionisationsdetektor werden während der Messung Elektronen durch Strahlungsenergie soweit angeregt, bis sie von ihrem Atom oder Molekül abgetrennt werden. Die Energiequelle für die Ionisation ist eine mit Edelgas gefüllte, unter geringem Druck stehende Entladungslampe, die einen stabilen monochromatischen energiereichen Lichtstrom von Photonen erzeugt. Die UV-Lampe ist gasdicht im Detektor eingebaut. Über ein UV-Licht durchlässiges Fenster ist die Lichtquelle vom Trägergasstrom getrennt. Mit einem UV-Detektor werden die Messsignale registriert. Die Signale werden verstärkt, digitalisiert und abgespeichert.

Der Gaschromatograph GCX55 ist mit einem Standard-Industrie-PC mit einem Windows-Betriebssystem ausgerüstet. Alle Daten werden vom Rechner auf der internen Festplatte gespeichert und sind jederzeit wieder abrufbar. Die Steuerung des GCX55 erfolgt über die Software GCX55.exe. Das entstehende Chromatogramm kann auf dem LCD-Bildschirm in Echtzeit verfolgt werden. Für die auszuwertenden Komponenten werden die Peakfläche, Peakhöhe und die Konzentration errechnet und dargestellt. Darüber hinaus können in einem Menü die bereits gespeicherten Chromatogramme aufgerufen und Einstellungen des Steuerprogramms verändert werden.

Der GCX55 besitzt elektronische Sensoren zur Überwachung u. a. des Trägergasflusses, der Ofentemperatur und des Druckes für die Ventilschaltung. Die dabei gemessenen Werte werden auf dem Bildschirm in der Fußzeile unterhalb des Chromatogramms kontinuierlich angezeigt und in die Chromatogrammdaten abgespeichert.

Technische Daten:

Allgemein:	
Geprüfte Software:	6.4.2.19
Gehäuse	19"-Gehäuse
Höhe	5 HE (224 mm)
Tiefe (ohne Handgriffe)	552 mm
Breite (Gehäuse)	430 mm
Breite (Frontplatte)	483 mm
Gewicht	19,5 kg
Umgebungstemperatur	0 °C bis 30 °C
Feuchtigkeit	0 % bis 95 % relative Luftfeuchtigkeit, nicht kondensierend
Versorgung:	
Spannung	230 VAC, 115 VAC (auf Anfrage)
Leistungsaufnahme	500 VA (Inbetriebnahme, 1 Minute), 300 VA (Normalbetrieb)
Trägergas	Stickstoff, 4 bis 5 bar, 15 ml/min
Gasanschlüsse	Swagelok 1/8" Verschraubungen
	Kalibriergas BTX, drucklos, ≥ 30 ml/min
	Optional: Nullluft für die Kalibrierung, 4 bis 5 bar, 50 ml/min
Detektor:	
Тур	PID – Photoionisationsdetektor
Probenahme:	
Probenahme	Probenahmezylinder
Volumenmessung	Thermischer Massendurchflussregler
	Über Probenahmezylinder, mit Druck- und Temperatur-Korrektur
Zykluszeit	15 min
Durchflussrate	max. 30 ml/min (Spülung der internen Probenleitung)
	15 ml/min (Normalbetrieb)
Probenvolumen	35 ml
Anreicherung:	
Technologie	Anreicherungsröhrchen mit Graphsphere 2016
Anreicherungstemperatur	Raumtemperatur, ≤ 40 °C
Desorptionstemperatur	300 °C

Spezifikationen:		
Gasleitungsumschaltung:	10-Wege-Ventil	
Analytischer Ofen:	Isothermisch eingestellt auf 70 °C	
Kommunikation:		
Schnittstellen	4x RS232	
PC-Anschlüsse	4x USB 2.0, 2x Ethernet 1 Gb/s, VGA	
Analogausgänge	7 digital Ausgänge (davon ein potentialfreies Relais)	
	4 Analog Ausgänge	
	Optional: I/O Platine	
Protokolle	ASCII (Synspec eigenes Protokoll)	
	Bayern-Hessen, Gesytec	
	Modbus	

4 Prüfprogramm

4.1 Laborversuche

Zur Durchführung der Laborversuche wurden zwei Gaschromatographen der Fa. Synspec B.V. (Serien-Nr. 80001 und 80004) in ein 19''-Gestell im Prüflabor der LUBW eingebaut.

Zum Messplatzaufbau gehörte ebenso eine Gasmischapparatur nach den Vorgaben der DIN EN ISO 6145-6 "Gasanalyse – Herstellung von Kalibriergasgemischen mit Hilfe von dynamisch-volumetrischen Verfahren – Teil 6: Kritische Düsen" und ein katalytischer Nullgasgenerator der Fa. Headline-Filters (Air Purifier CAP 60).

Mittels der Gasmischapparatur wurde ein Vorgemisch aus einer rückgeführten Prüfgasflasche der Firma NPL (Fl.-Nr.: NPL-D711530) mit einer Benzolkonzentration von 16,87 mg/m³ mit Grundgas in den Konzentrationsbereich von $1,3 - 54,3 \mu g/m^3$ verdünnt. Die Einstellung der gewünschten Verdünnung erfolgte dabei über die Variation der beiden Volumenströme (Grundgas und Benzolbeimengung). Die exakte Bestimmung der Volumenströme wurde mit einem zertifizierten Volumeter der Fa. DryCal vorgenommen.

Der Nullgasgenerator diente zur Herstellung von Grundgas (gereinigte Druckluft) für die Gasmischapparatur sowie zur Nullgasvorgabe.

Vor Beginn der Laborversuche wurde zunächst eine Auto-Linearisierung durchgeführt. Diese Funktion ist speziell für den PID vorgesehen und läuft über mehrere Stunden. Dabei wurde eine Konzentration von ca. 25 μ g/m³ vorgegeben. Es werden dabei automatisch mehrere Konzentrationsstufen erzeugt um eine Linearisierung des PID zu erreichen. Anschließend wurde eine Kalibrierung der Gaschromatographen durchgeführt. Die Kalibrierfunktion wurde dabei mit Hilfe von fünf Kalibrierpunkten in einem Konzentrationsbereich von 0 μ g/m³ bis 54,3 μ g/m³ ermittelt und vom Hersteller in den Geräten hinterlegt.

Zur Durchführung der Temperaturabhängigkeitsversuche wurden die Gaschromatographen in eine Klimakammer Clime-Event C/340/40/3 der Firma Weisstechnik eingebaut.

4.2 Feldtest

Zur Durchführung des Feldtests wurden die bereits im Labor getesteten Gaschromatographen in eine klimatisierte Messstation (T = $22^{\circ}C \pm 3^{\circ}C$) auf dem Versuchsgelände gegenüber dem LUBW-Gebäude eingebaut und kalibriert (siehe Abb. 4.1).

Abb. 4.1: Messstation auf dem Versuchsgelände der LUBW

Die Messstation befindet sich im unmittelbaren Einflussbereich einer stark befahrenen Straße (Autobahnzubringer).

Die Geräte wurden in einem 19"-Gestell installiert und an das Probenahmesystem (Probenahmerohr mit einem genormten Entnahmekopf auf dem Dach) der Station angeschlossen. Dadurch war gewährleistet, dass beide Geräte eine repräsentative Messung desselben Probeluftvolumens durchführten. Zur Durchführung der regelmäßigen Funktionskontrolle wurde der Messplatzaufbau mit einer Gasmischapparatur ergänzt. Die Funktionskontrolle erfolgte durch manuelle Umschaltung zwischen Nullgas und Prüfgas.

Am Standort der verwendeten Messstation liegen die Benzolkonzentrationen im Jahresmittel bei 1 - 3 μ g/m³. Um zur Ermittlung der Vergleichsstandardabweichung im Feldtest eine größere Streubreite der ermittelten Messwerte zu bekommen, wurde für den Zeitraum von ca. 3 Wochen, unterhalb des Entnahmekopfes des Probenahmesystems ein Kapillardosierer (Glasbehälter mit einer Kapillaröffnung) befestigt, der mit Benzol gefüllt war. Je nach Umgebungstemperatur und Luftdruck wurde dabei eine bestimmte Menge an BTX emittiert, die windrichtungsabhängig zufällig in den Probenluftstrom eingetragen wurde. Auf diese Weise konnten Benzolkonzentrationen bis zu ca. 20 μ g/m³ gemessen werden.

Zur Datenübermittlung an die Messnetzzentrale der LUBW wurden die Geräte über die geräteinterne RS232-Schnittstelle an den Stationsrechner angeschlossen, der mit einem Datenerfassungssystem ausgestattet ist. Die Datenkommunikation zwischen den Gaschromatographen und dem Stationsrechner erfolgte über das "Bayern-Hessen-Protokoll".

5 Referenzmessverfahren

Bei der Eignungsprüfung des Gaschromatographen muss gewährleistet sein, dass die verwendeten Prüfgase auf Referenznormale zurückgeführt werden. Es wurde eine Prüfgasflasche der Firma NPL (National Physical Laboratory) mit einem Volumen von 10 l verwendet. Die Konzentrationen der einzelnen Komponenten liegen jeweils bei ca. 5 ppm (Benzol, Toluol, Ethyl-benzol, o-Xylol) bzw. bei ca. 10 ppm (m/p-Xylol). Die Firma NPL ist das nationale Referenzlabor von England und gibt für diese Prüfgasflasche ein Zertifikat aus, das eine Gültigkeit von zwei Jahren hat.

Die NPL-Prüfgasflasche wird dazu an eine Mischapparatur angeschlossen, dabei handelt es sich um ein dynamisch - kontinuierlich arbeitendes Verdünnungssystem auf der Grundlage der DIN EN ISO 6145. Bei diesem Verfahren wird ein kleiner Volumenstromanteil des zertifizierten Prüfgases (ca. 0,5 - 8 ml/min) mit einem Grundgasstrom aus Druckluft (ca. 2,3 - 6,7 l/min), der über Aktivkohle gereinigt wird, vermischt.

Die Konzentration des hergestellten Prüfgases wird dabei aus der Konzentration der Prüfgasflasche sowie den beiden Volumenströmen nach der folgenden Formel berechnet.

$$\boldsymbol{c} = \boldsymbol{c}_{\boldsymbol{P}\boldsymbol{G}} * \frac{\boldsymbol{Q}_{\boldsymbol{P}\boldsymbol{G}}}{\boldsymbol{Q}_{\boldsymbol{P}\boldsymbol{G}} + \boldsymbol{Q}_{\boldsymbol{G}\boldsymbol{G}}} \tag{Gl. 5.1}$$

Dabei ist:

c erzeugte Prüfgaskonzentration, in $\mu g/m^3$;

c_{PG} Konzentration der zertifizierten Prüfgasflasche, in mg/m³;

Q_{PG} Volumenstrom des zertifizierten Prüfgases, in Nml/min;

Q_{GG} Volumenstrom des Grundgases, in Nml/min.

Durch die Variation der beiden Volumenströme Q_{PG} und Q_{GG} können verschiedene Prüfgaskonzentrationen hergestellt werden. Dies geschieht, indem man den entsprechenden Vordruck vor den beiden kritischen Düsen mittels Feindruckreglern variiert. Das Vorgehen erfolgt nach den Vorgaben des im Labor bestehenden Qualitätsmanagementsystems nach DIN EN ISO/IEC 17025 (Technische Anweisung TA 5-6-AM1-207 "Bestimmung der Konzentration von Prüfgasen für aromatische und chlorierte Kohlenwasserstoffe").

6 Prüfergebnisse

6.1 Messwertanzeige

6.1.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.1)

Das Messgerät muss eine funktionsfähige Messwertanzeige am Gerät besitzen

6.1.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.1.3 Prüfung

Es ist zu prüfen, ob die Messeinrichtung eine Messwertanzeige besitzt.

6.1.4 Auswertung

Die Funktionsfähigkeit der Messwertanzeige ist festzustellen.

6.1.5 Bewertung

Mindestanforderung erfüllt? ja

6.1.6 Dokumentation

Der Gaschromatograph ist mit einem Standard-Industrie-PC mit einem Windows-Betriebssystem ausgerüstet. Das bedeutet, dass eine komplette PC-Struktur vorhanden ist um die Messergebnisse zu bearbeiten. Alle Daten werden vom Rechner auf der internen Festplatte gespeichert und sind jederzeit wieder abrufbar. Auf einem LCD-Bildschirm kann das aktuelle oder ein bereits gespeichertes Chromatogramm dargestellt werden.

Abb. 6.1: Anzeige eines Chromatogramms am LCD-Bildschirm

6.2 Kalibriereingang

6.2.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.2)

Siehe Kap. 6.2.3

6.2.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.2.3 Prüfung

Es ist zu prüfen, ob das Messgerät über einen vom Probengaseingang getrennten Prüfgaseingang verfügt.

6.2.4 Auswertung

Siehe Kap. 6.2.5

6.2.5 Bewertung

Die geprüften Geräte besitzen keinen getrennten Prüfgaseingang zur Aufgabe von Kalibriergas.

Mindestanforderung erfüllt? nicht zutreffend

6.2.6 Dokumentation

Entfällt

6.3 Wartungsfreundlichkeit

6.3.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.3)

Die notwendigen regelmäßigen Wartungsarbeiten sind nach den Anweisungen der Betriebsanleitung auszuführen. Die notwendigen Wartungsarbeiten an der Messeinrichtung sollten ohne größeren Aufwand möglichst von außen durchführbar sein.

6.3.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.3.3 Prüfung

Es ist festzustellen, ob die Arbeiten mit üblichen Werkzeugen mit einem vertretbaren Zeitaufwand durchgeführt werden können.

6.3.4 Auswertung

Das Gerät benötigt grundsätzlich keine Wartungsarbeiten, die regelmäßig vom Anwender durchgeführt werden müssen. Außerdem wird einmal jährlich eine Generalüberholung beim Hersteller empfohlen.

6.3.5 Bewertung

Mindestanforderung erfüllt? ja

6.3.6 Dokumentation

Entfällt

6.4 Funktionskontrolle

6.4.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.4)

Siehe Kap. 6.4.5

6.4.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.4.3 Prüfung

Es ist zu prüfen, ob das Prüfgaserzeugungssystem telemetrisch angesteuert werden kann.

6.4.4 Auswertung

Siehe Kap. 6.4.5

6.4.5 Bewertung

Die geprüften Geräte besitzen keine Einrichtungen zur Prüfgaserzeugung, sodass eine interne Funktionskontrolle nicht vorgesehen ist.

Mindestanforderung erfüllt? nicht zutreffend

6.4.6 Dokumentation

Entfällt

6.5 Rüst- und Einlaufzeiten

6.5.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.5)

Die Rüst- und Einlaufzeiten der Messeinrichtung sind in der Betriebsanleitung anzugeben.

6.5.2 Gerätetechnische Ausstattung

Für die Prüfung ist zusätzlich bereitzustellen:

• Uhr

6.5.3 Prüfung

Die Messeinrichtungen sind nach den Beschreibungen des Geräteherstellers vom Prüfinstitut in Betrieb zu nehmen. Die erforderlichen Rüst- und Einlaufzeiten sind getrennt zu erfassen.

6.5.4 Auswertung

Die festgestellten Zeiten sind zu dokumentieren.

6.5.5 Bewertung

Mindestanforderung erfüllt? ja

6.5.6 Dokumentation

<u>Rüstzeit:</u>

Die Rüstzeit beträgt etwa: 1 Stunde

Vor Beginn einer Messung muss der Gaschromatograph in einem 19-Zoll-Rack installiert und das Trägergas N_2 (Qualität 5.0) angeschlossen werden. Der Anschluss erfolgt über 1/8"-Verschraubung an der gekennzeichneten Stelle auf der Rückseite des Gerätes. Es ist darauf zu achten, dass bei dem angeschlossenen Trägergas ein Druck von 4 – 5 bar eingestellt wird.

Einlaufzeit:

Die Einlaufzeit beträgt etwa: 1 Stunde

Beim Einschalten des Messgerätes werden das Betriebssystem und die Chromatographiesoftware automatisch gestartet. Beim Start wird ein Selbsttest der Elektronik durchgeführt und der Ofen auf die eingestellte Grundtemperatur aufgeheizt. Das Gerät benötigt mehrere Minuten um alle eingestellten Sollwerte zu erreichen. Da vor einer Messung zunächst eine Anreicherung des Messgases auf der Anreicherungssäule erfolgen muss, werden die ersten Messergebnisse erst nach dem zweiten Messzyklus auf der Festplatte gespeichert.

6.6 Bauart

6.6.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.6)

Die Betriebsanleitung muss Angaben des Herstellers zur Bauart der Messeinrichtung enthalten.

6.6.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

- Wechselstromzähler
- Waage

6.6.3 Prüfung

Der Aufbau der übergebenen Geräte ist mit der Beschreibung in den Handbüchern zu vergleichen. Weiterhin sind die Bauform, Einbaulage, Sicherheitsanforderungen und Abmessungen sowie das Gewicht einschließlich Zubehör zu ermitteln. Der angegebene Energieverbrauch ist über 24 h im Normalbetrieb während des Feldtests zu bestimmen.

6.6.4 Auswertung

Die vorgefundenen Merkmale sind mit den Beschreibungen in den Handbüchern zu vergleichen.

6.6.5 Bewertung

Mindestanforderung erfüllt? ja

6.6.6 Dokumentation

Abmessung des Gerätes:

19"-Gehäuse mit 5 HE, Breite 48,3 cm, Höhe 20,4 cm, Tiefe (ohne Handgriffe) 55,2 cm

Betriebsspannung:

230 VAC

Gewicht:

20 kg

Energieverbrauch:

1,7 kWh

6.7 Unbefugtes Verstellen

6.7.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.7)

Die Justierung der Messeinrichtung muss gegen unbeabsichtigtes und unbefugtes Verstellen gesichert werden können.

6.7.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.7.3 Prüfung

Es ist festzustellen, ob die eingestellte Justierung trotz aktivierter Schutzvorrichtung (z. B. Passwort) veränderbar ist.

6.7.4 Auswertung

Siehe Kap. 6.7.6

6.7.5 Bewertung

Mindestanforderung erfüllt? ja

6.7.6 Dokumentation

Die Software zur Steuerung des Gaschromatographen ist durch ein Passwort gesichert und kann deshalb nicht versehentlich geändert werden.

6.8 Messsignalausgang

6.8.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.8)

Die Messsignale müssen digital (z. B. RS 232) und/oder analog (z. B. 4 mA bis 20 mA) angeboten werden.

6.8.2 Gerätetechnische Ausstattung

Für die Prüfung ist zusätzlich bereitzustellen:

• Stationsrechner zur Übertragung der Daten in die Messnetzzentrale der LUBW

6.8.3 Prüfung

Es ist zu prüfen, ob die an den Messeinrichtungen eingestellten Betriebszustände und Messsignale von dem nach geschalteten Auswertesystem richtig erkannt und registriert werden.

6.8.4 Auswertung

An die Messeinrichtungen ist ein Auswertesystem anzuschließen. Die jeweiligen Betriebszustände und Messsignale sind aufzuzeichnen und mit den Sollwerten zu vergleichen.

6.8.5 Bewertung

Mindestanforderung erfüllt? ja

6.8.6 Dokumentation

Die Messsignale konnten mittels "Bayern-Hessen-Datenprotokoll" auf einen Stationsrechner übertragen werden. Dies wurde während des Feldtests überprüft; es wurde eine Übereinstimmung zwischen den übertragenen Daten und den im Gerät gespeicherten Daten festgestellt. Die Tab. 6.1 zeigt diese Übereinstimmung am Beispiel der Funktionsprüfung (Aufgabe vom Prüfgas).

 Tab. 6.1: Übereinstimmung der Anzeige von Gaschromatographen mit den übertragenen Daten in die Messnetzzentrale der LUBW (MNZ)

Datum/	Prüfgas- GC-Anzeige		Anzeige in MNZ		
Uhrzeit	konzentration	GC 80001	GC 80004	GC 80001	GC 80004
03.01.2023 11:45	35,1 μg/m³	34,8 µg/m ³	34,9 µg/m ³	34,8 µg/m ³	34,9 µg/m ³
03.01.2023 12:00		34,5 µg/m³	35,6 µg/m ³	34,5 µg/m ³	35,6 µg/m ³
03.01.2023 12:15		34,6 µg/m³	36,0 µg/m ³	34,6 µg/m ³	36,0 µg/m ³
03.01.2023 12:30		34,7 μg/m ³	36,2 µg/m ³	34,7 µg/m ³	36,2 µg/m ³

6.9 Digitale Schnittstelle

6.9.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.9)

Es ist zu prüfen, ob die digitale Schnittstelle die Übertragung der Messsignale, Statussignale und Informationen wie Gerätetyp, Messbereich, Messkomponente und Einheit erlaubt. Weiterhin ist zu prüfen, ob die digitale Schnittstelle vollständig im einschlägigen Normen- und Richtlinienwerk beschrieben ist.

6.9.2 Gerätetechnische Ausstattung

Siehe Kap. 6.8 und Kap. 6.14

6.9.3 Prüfung

Siehe Kap. 6.8 und Kap. 6.14

6.9.4 Auswertung

Siehe Kap. 6.8 und Kap. 6.14

6.9.5 Bewertung

Mindestanforderung erfüllt? ja

6.9.6 Dokumentation

Siehe Kap. 6.8 und Kap. 6.14

6.10 Datenübertragungsprotokoll

6.10.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.10)

Falls die Messsignale des Messgeräts digital übertragen werden, ist zu überprüfen, ob das Messgerät mindestens über ein Datenübertragungsprotokoll verfügt.

6.10.2 Gerätetechnische Ausstattung

Siehe Kap. 6.8 und Kap. 6.14

6.10.3 Prüfung

Siehe Kap. 6.8 und Kap. 6.14

6.10.4 Auswertung

Siehe Kap. 6.8 und Kap. 6.14

6.10.5 Bewertung

Mindestanforderung erfüllt? ja

6.10.6 Dokumentation

Siehe Kap. 6.8 und Kap. 6.14

6.11 Messbereich

6.11.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.11)

Der Messbereichsendwert der Messeinrichtung muss größer oder gleich der oberen Grenze des Zertifizierungsbereiches sein.

6.11.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.11.3 Prüfung

Der Messbereichsendwert ist zu ermitteln.

6.11.4 Auswertung

Entfällt

6.11.5 Bewertung

Mindestanforderung erfüllt? ja

6.11.6 Dokumentation

Vom Hersteller wird kein Messbereichsendwert definiert. Während der Eignungsprüfung wurden Konzentrationen aufgegeben, die einen Messbereichsendwert von 50 µg/m³ einschließen.

6.12 Negative Messsignale

6.12.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.12)

Negative Messsignale oder Messwerte dürfen nicht unterdrückt werden (lebender Nullpunkt).

6.12.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.12.3 Prüfung

Es ist zu prüfen, ob der angezeigte Nullpunkt ein lebender Nullpunkt ist und das Messgerät sowohl positive als auch negative Signale anzeigen kann.

6.12.4 Auswertung

Siehe Kap. 6.12.5

6.12.5 Bewertung

Das Messgerät ist verfahrensbedingt nicht mit einem lebenden Nullpunkt ausgestattet.

Mindestanforderung erfüllt? nicht zutreffend

6.12.6 Dokumentation

Entfällt

6.13 Stromausfall

6.13.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.13)

Bei Gerätestörungen und bei Stromausfall muss ein unkontrolliertes Ausströmen von Betriebs- und Kalibriergas unterbunden sein. Die Geräteparameter sind durch eine Pufferung gegen Verlust durch Netzausfall zu schützen. Bei Spannungswiederkehr muss das Gerät automatisch wieder den messbereiten Zustand erreichen und gemäß der Betriebsvorgabe die Messung beginnen.

6.13.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.13.3 Prüfung

Durch simulierten Stromausfall ist zu prüfen, ob das Gerät unbeschädigt bleibt und nach Wiedereinschalten der Stromversorgung wieder messbereit ist.

6.13.4 Auswertung

Die störungsfreie Betriebsbereitschaft nach Wiedereinschalten ist durch Vergleich der Geräteparameter vor und nach dem Stromausfall festzustellen.

6.13.5 Bewertung

Mindestanforderung erfüllt? ja

6.13.6 Dokumentation

Während des Feldtests fand ein 10-minütiger Strommausfall statt. Nach der Wiederherstellung der Stromversorgung schalteten beide Geräte automatisch wieder in den normalen Betriebsmodus. Das Betriebssystem des geräteinternen PC fuhr automatisch hoch und startete gleichzeitig die Steuer- und Auswertesoftware des Gaschromatographen. Ein unkontrolliertes Ausströmen des Trägergases (N₂) wurde nicht festgestellt.

6.14 Gerätefunktionen

6.14.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.14)

Die wesentlichen Gerätefunktionen müssen durch telemetrisch übermittelbare Statussignale zu überwachen sein

6.14.2 Gerätetechnische Ausstattung

Für die Prüfung ist zusätzlich bereitzustellen:

• Auswerte- oder Datenerfassungssystem

6.14.3 Prüfung

An den Messeinrichtungen ist ein Auswerte- oder Datenerfassungssystem anzuschließen. Die jeweiligen Betriebszustände (Betriebsbereitschaft, Wartung, Störung) an den Messeinrichtungen sind einzustellen. An die Messeinrichtung ist ein Modem anzuschließen. Mittels Datenfernübertragung sind die Statussignale des Gerätes zu erfassen.

6.14.4 Auswertung

Es ist zu prüfen, ob die an den Messeinrichtungen eingestellten Betriebszustände von dem nach geschalteten Auswerte- oder Datenerfassungssystem richtig erkannt und registriert werden.

6.14.5 Bewertung

Mindestanforderung erfüllt? ja

6.14.6 Dokumentation

Während des Feldtests waren die beiden Geräte über den Stationsrechner mit der Messnetzzentrale der LUBW verbunden. Nach Abschluss des Feldtests wurden die jeweiligen Betriebszustände (Betriebsbereitschaft und Wartung) an den Messgeräten ausgewählt.

Das Gerät besitzt eine Vielzahl von Anzeigen der Fehlermeldungen. Mehrere Funktionsfehler (Probenahme, Detektor, Temperatur, Durchfluss, Druck usw.) wurden simuliert.

Die telemetrische Übertragung dieser Betriebszustände ist gewährleistet.

6.15 Umschaltung

6.15.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.15)

Die Umschaltung zwischen Messung und Funktionskontrolle und/oder Kalibrierung muss telemetrisch durch rechnerseitige Steuerung und manuell auslösbar sein.

6.15.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.15.3 Prüfung

Es ist zu prüfen, ob es zwischen Messung und Funktionskontrolle und/oder Kalibrierung manuell und rechnerseitig umgeschaltet werden kann.

6.15.4 Auswertung

Siehe Kap. 6.15.5

6.15.5 Bewertung

Die geprüften Geräte besitzen keine Einrichtungen zur Prüfgaserzeugung und keinen getrennten Prüfgaseingang, sodass eine interne Funktionskontrolle nicht vorgesehen ist.

Mindestanforderung erfüllt? nicht zutreffend

6.15.6 Dokumentation

Entfällt

6.16 Gerätesoftware

6.16.1 Mindestanforderung (VDI 4202 Blatt 1 Kap. 8.3.16)

Die Version der Gerätesoftware muss vom Messgerät angezeigt werden können.

6.16.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.16.3 Prüfung

Es ist zu prüfen, ob die Version der Gerätesoftware vom Messgerät angezeigt wird. Die Version der Gerätesoftware ist zu dokumentieren

6.16.4 Auswertung

Siehe Kap. 6.16.3

6.16.5 Bewertung

Mindestanforderung erfüllt? ja

6.16.6 Dokumentation

Durch einen Klick auf "Hilfe" und "Über" in der Menüleiste des Programms, erscheint ein Fenster mit der aktuellen Software-Version für die Steuerung des Gaschromatographen (siehe Abb. 6.2).

- Software zur GC-Steuerung und Kommunikation mit externen Geräten: GCX55.exe
- Version 6.4.2.19

Abb. 6.2: Anzeige der Software-Version

6.17 Kurzzeitdrift

6.17.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.3)

Die Kurzzeitdrift $D_{s,s}$ am Prüfwert 2 (Referenzpunkt = 70 – 80 % des Höchstwerts des Zertifizierungsbereichs von Benzol) muss unter Laborbedingungen über eine Driftperiode von 12 h kleiner oder gleich 2,0 µg/m³ sein.

6.17.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

• Prüfstandards (z. B. Prüfgas geeigneter Konzentration)

6.17.3 Prüfung

Auf das Gerät wird unter Laborbedingungen Prüfgas am Prüfwert 2 aufgegeben. Dabei wird aus vier aufeinanderfolgenden Messungen der Mittelwert berechnet. Nach 12-stündiger Messung der Außenluft werden die Messungen am Prüfwert 2 wiederholt.

6.17.4 Auswertung

Die Kurzzeitdrift am Prüfwert 2 wird folgendermaßen berechnet:

$$D_{s,s} = (x_{s,2} - x_{s,1}) \tag{Gl. 6.1}$$

Dabei ist:

 $D_{s,s}$ die 12-Stunden-Drift am Prüfwert 2, in $\mu g/m^3$;

 $x_{s,1}$ der Mittelwert der vier Messungen zu Beginn der Driftperiode, in $\mu g/m^3$;

 $x_{s,2}$ der Mittelwert der vier Messungen am Ende der Driftperiode, in $\mu g/m^3$.

Das Ergebnis der Kurzzeitdrift wird nicht in die Gesamtmessunsicherheit eingeschlossen.

6.17.5 Bewertung

Mindestanforderung erfüllt? ja

6.17.6 Dokumentation

Zur Berechnung der Kurzzeitdrift unter Laborbedingungen wurde den beiden Gaschromatographen eine Konzentration von ca. 36,2 μ g/m³ über einen Zeitraum von 75 Minuten (5 Messzyklen) angeboten. Zur Auswertung wurde aus vier Messzyklen ein Mittelwert gebildet, der erste Messzyklus wurde als Übergangswert verworfen. Nach 12 h wurde die Messung wiederholt und erneut aus vier Messzyklen ein Mittelwert bestimmt.

Die daraus berechneten Werte für die Kurzzeitdrift $D_{s,s}$ sind in Tab. 6.2 dargestellt.

	GC 80001	GC 80004
$x_{s,1}$, in $\mu g/m^3$	35,80	35,68
$x_{s,2}$, in $\mu g/m^3$	35,48	35,25
D _{s,s} , in µg/m ³	0,32	0,43

Tab. 6.2: Berechnete Werte für die Kurzzeitdrift D_{s,s}

6.18 Wiederholstandardabweichung

6.18.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.4)

Die Wiederholstandardabweichung $s_{r,z}$ am Prüfwert 1 (10 % des Jahresgrenzwertes = 0,5 µg/m³) muss kleiner oder gleich 0,20 µg/m³ sein und die Wiederholstandardabweichung $s_{r,ct}$ am Jahresgrenzwert (= 5µg/m³) muss kleiner oder gleich 0,25 µg/m³ sein.

6.18.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

- Gasmischapparatur
- Prüfstandards (z. B. Prüfgas geeigneter Konzentration)

6.18.3 Prüfung

Bei dieser Prüfung werden jeweils 11 aufeinanderfolgende Messungen mit Prüfgaskonzentrationen am Prüfwert 1 und am Jahresgrenzwert durchgeführt.

6.18.4 Auswertung

Aus den jeweils letzten zehn Ergebnissen dieser Messungen wird die Wiederholstandardabweichung nach der folgenden Gleichung berechnet:

$$s_{r,c_t} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$
 (Gl. 6.2)

Dabei ist:

s _{r,ct}	die Wiederholstandardabweichung am Messwert $c_{t},$ in $\mu g/m^{3};$
Xi	das Ergebnis der i-ten Messung, in µg/m3;
x	der Mittelwert der 10 Messungen;
n	die Anzahl der Einzelmessungen, $n = 10$.

Die Standardmessunsicherheit der Wiederholstandardabweichung ur ist bestimmt durch:

$$u_r = \frac{s_r}{\sqrt{m}} \tag{Gl. 6.3}$$

mit

$$s_r = \frac{l_a}{c_t} * s_{r,c_t} \tag{Gl. 6.4}$$

Dabei ist:

ur	die Standardmessunsicherheit für die Wiederholstandardabweichung beim Jahresgrenzwert,
	in $\mu g/m^3$;
Sr	die Wiederholstandardabweichung am Jahresgrenzwert, in µg/m³;
m	die Anzahl der unabhängigen Messungen, die durchgeführt wurden, um den Wert von sr zu
	ernalten;
la	der Jahresgrenzwert, in µg/m ³ ;
c _t	die Prüfgaskonzentration im Bereich des Jahresgrenzwertes, in µg/m³;
s _{r,ct}	die Wiederholstandardabweichung am Messwert c_t , in $\mu g/m^3$.

6.18.5 Bewertung

Mindestanforderung erfüllt? ja

6.18.6 Dokumentation

Zur Berechnung der Wiederholstandardabweichung wurde mit 11-facher Wiederholung zunächst Prüfgas im Bereich von Prüfwert 1 (10 % des Jahresgrenzwertes) und dann Prüfgas im Bereich des Jahresgrenzwertes angeboten. Die letzten zehn Ergebnisse wurden jeweils verwendet.

In Tab. 6.3 sind die Ergebnisse bei der Aufgabe von Prüfgas im Bereich von Prüfwert 1 für die beiden Gaschromatographen GC 80001 und GC 80004 dargestellt.

Tab. 6.3: Wiederholstandardabweichung bei Aufgabe von Prüfgas im Bereich von Prüfwert 1

	GC 80001	GC 80004
Wiederholstandardabweichung $s_{r,z}$, in $\mu g/m^3$	0,01	0,01
Vorgegebene Benzolkonzentration, in µg/m ³	0,53	0,53

In Tab. 6.4 sind die Ergebnisse bei der Aufgabe von Prüfgas im Bereich des Jahresgrenzwertes für die beiden Gaschromatographen GC 80001 und GC 80004 dargestellt.

	GC 80001	GC 80004
Wiederholstandardabweichung $s_{r,ct}$, in $\mu g/m^3$	0,02	0,02
Standardunsicherheit u_r , in $\mu g/m^3$	0,00*	0,01*
Vorgegebene Benzolkonzentration, in µg/m ³	5,3	5,3

*Werte werden zur Berechnung der Gesamtmessunsicherheit herangezogen

6.19 Abweichung von der Linearität bei der Kalibrierfunktion (Lack-of-fit)

6.19.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.5)

Das Residuum r_z am Nullpunkt muss kleiner oder gleich 0,5 μ g/m³ sein und das größte relative Residuum r_{max} aus der linearen Regressionsfunktion muss kleiner oder gleich 5 % sein. Wenn ein oder mehr der relativen Residuen das Kriterium nicht erfüllen, besteht der Analysator die Linearitätsprüfung nicht.

6.19.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

- Gasmischapparatur
- Prüfstandards (z. B. Nullgas, Prüfgas geeigneter Konzentration)

6.19.3 Prüfung

Eine lineare Regressionsfunktion wird aus den Signalen des Analysators und den entsprechenden aufgegebenen Konzentrationsniveaus ermittelt. Das Residuum an jedem Konzentrationsniveau ist gleich der Differenz zwischen dem mittleren gemessenen Signal, ausgedrückt als Konzentration, und der durch die lineare Regressionsfunktion gegebenen Konzentration. Die lineare Regressionsfunktion und die Residuen sind nach Anhang A der DIN EN 14662-3: 2016-02 zu berechnen.

Die Linearität des Analysators muss im Bereich zwischen 0 % und 90 % des Maximums des zertifizierten Bereichs mit mindestens sechs Konzentrationen (einschließlich $0 \ \mu g/m^3$) geprüft werden.

6.19.4 Auswertung

Die Residuen der Mittelwerte für jeden Kalibrierpunkt (einschließlich des Nullpunkts) werden gemäß Anhang A.2 der DIN EN 14662-3: 20016-02 nach den folgenden Gleichungen berechnet:

$$(y_a)_c = \frac{\sum (y_i)_c}{m}$$
 (Gl. 6.5)

Dabei ist:

(y _a) _c	der mittlere y-Wert bei der Konzentration c;
(y _i) _c	der einzelne y-Wert bei der Konzentration c;
m	die Anzahl der Wiederholmessungen bei ein und derselben Konzentration c.

Das Residuum für jeden Mittelwert (rc) bei jeder Konzentrationsstufe wird berechnet nach:

$$r_c = (y_a)_c - (A + B \cdot c)$$
 (Gl. 6.6)

Dabei ist:

A	der Achsenabschnitt der Kalibrierfunktion;
В	die Steigung der Kalibrierfunktion.

Die relative Abweichung (in %) jedes Mittelwertes bei der zugehörigen Konzentration c wird berechnet nach:

$$r_{c,rel.} = \frac{r_c}{c} * 100$$
 (Gl. 6.7)

Der größte Wert von rc,rel. wird als rmax angegeben und ist für die Unsicherheitsberechnung zu verwenden.

Die auf die Abweichung von der Linearität beim Jahresgrenzwert zurückgehende Standardmessunsicherheit u_l ist gegeben durch:

$$u_l = \frac{r_{max}}{100} * \frac{l_a}{\sqrt{3}} \tag{Gl. 6.8}$$

Dabei ist:

ul	die auf die Abweichung von der Linearität beim Jahresgrenzwert zurückgehende Standard-
	messunsicherheit, in $\mu g/m^3$;

 r_{max} das größte Residuum von einer linearen Regressionsfunktion, berechnet nach Anhang A, in %; l_a der Jahresgrenzwert, in $\mu g/m^3$.

6.19.5 Bewertung

Mindestanforderung erfüllt? ja

6.19.6 Dokumentation

Mit Hilfe einer Gasmischapparatur wurden fünf verschiedene Prüfgaskonzentrationen und Nullgas in der Reihenfolge: 50 %, 10 %, 30 %, 5 %, 90 % und 0 % des Höchstwerts des Zertifizierungsbereichs von Benzol (50 μ g/m³), auf die beiden Gaschromatographen aufgegeben.

Jede Konzentration wurde für jeweils 60 Minuten (4 Messzyklen von 15 Minuten) aufgegeben. Der jeweils erste Messwert bei jeder Konzentrationsstufe wurde als Einlaufwert nicht berücksichtigt, d. h. für die Auswertung wurden jeweils nur die letzten drei Messwerte verwendet und daraus die Mittelwerte bestimmt. Über eine Regressionsrechnung wurde daraus die Kalibrierfunktion berechnet (siehe Tab. 6.5).

Tah	65.	Kalih	rierfu	nktion	der	Gase	hromat	oorai	hen	GC	80001	und	GC 80	004
rav.	0.3.	Kanu	nenu	IIKUOII	uer	Uasc.	monnai	ugraf	JUCH	UU (50001	unu	UC 80	004

	GC 80001	GC 80004
Kalibrierfunktion	y = 1,0013 x - 0,4728	y = 0,9967 x - 0,2375

In der Abb. 6.3 und Abb. 6.4 sind die Kalibrierfunktionen der beiden Gaschromatographen graphisch dargestellt.

Abb. 6.3: Graphische Darstellung der Kalibrierfunktion des GC 80001

Abb. 6.4: Graphische Darstellung der Kalibrierfunktion des GC 80004

	c _{soll} , in μg/m ³	(y _a) _c , in µg/m ³	(A + B *c _{soll})	rc, in μg/m³	r _{c,rel} ., in %
50 % vom ZB	26,57	25,67	26,1	-0,5	-1,7
10 % vom ZB	5,27	4,77	4,8	0	-0,7
30 % vom ZB	16,52	15,73	16,1	-0,3	-2,1
5 % vom ZB	2,75	2,22	2,3	-0,1	-2,1
90 % vom ZB	44,47	44,47	44,1	0,4	0,9
0 % vom ZB	0	0,02	-0,5	0,5	-

Tab. 6.6: Residuen der Mittelwerte für jeden Kalibrierpunkt (einschließlich Null) für GC 80001

Damit ergibt sich für den GC 80001

Standardmessunsicherheit u_i , in $\mu g/m^3$	-0,06*
Residuum am Nullpunkt rz, in µg/m³	0,5
Größtes Residuum r _{max} , in %	-2,1

*Wert wird zur Berechnung der Gesamtmessunsicherheit herangezogen

	c _{soll} , in μg/m ³	(ya)c, in µg/m ³	(A + B *c _{soll})	rc, in μg/m³	r _{c,rel} , in %
50 % vom ZB	26,57	25,88	26,2	-0,4	-1,4
10 % vom ZB	5,27	5,01	5,0	0	-0,2
30 % vom ZB	16,52	16,14	16,2	-0,1	-0,6
5 % vom ZB	2,75	2,42	2,5	-0,1	-3,0
90 % vom ZB	44,47	44,35	44,1	0,3	0,6
0 % vom ZB	0	0,05	-0,2	0,3	-

Tab. 6.7: Residuen der Mittelwerte für jeden Kalibrierpunkt (einschließlich Null) für GC 80004

Damit ergibt sich für den GC 80004

Standardmessunsicherheit u_i , in $\mu g/m^3$	-0,09*
Residuum am Nullpunkt r _z , in µg/m ³	0,3
Größtes Residuum r _{max} , in %	-3,0

*Wert wird zur Berechnung der Gesamtmessunsicherheit herangezogen

6.20 Empfindlichkeitskoeffizient des Probengasdruckes

6.20.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.6)

Der Empfindlichkeitskoeffizient b_{gp} für den Einfluss des Probengasdrucks am Prüfwert 2 (Referenzpunkt = 70 – 80 % des Höchstwerts des Zertifizierungsbereichs von Benzol) muss kleiner oder gleich 0,10 (μ g/m³)/kPa sein.

6.20.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

- Gasmischapparatur
- Prüfstandards (z. B. Prüfgas geeigneter Konzentration)
- Druckmesseinrichtung

6.20.3 Prüfung

Es sind jeweils fünf aufeinanderfolgende Messungen mit Konzentrationen am Prüfwert 2 und bei Probengasdrücken von 80 kPa (\pm 0,2 kPa) und 110 kPa (\pm 0,2 kPa) durchzuführen. Für jeden Druck ist der Mittelwert aus den letzten vier Messungen zu berechnen.

6.20.4 Auswertung

Der Einfluss des Probengasdruckes bgp wird nach der folgenden Gleichung berechnet:

$$b_{gp} = \left| \frac{(x_{p2} - x_{p1})}{(p_1 - p_2)} \right| \tag{Gl. 6.9}$$

Die auf die Änderung des Probengasdruckes beim Jahresgrenzwert zurückgehende Standardmessunsicherheit u_{gp} wird wie folgt berechnet:

$$u_{gp} = \frac{l_a}{c_t} * b_{gp} * \sqrt{\frac{(p_2 - p_1)^2}{3}}$$
(Gl. 6.10)

Dabei ist

b_{gp}	der Empfindlichkeitskoeffizient des Probengasdrucks, in (µg/m³)/kPa;
\mathbf{X}_{p1}	der Mittelwert der Messungen beim Probengasdruck p1, in µg/m3;
x_{p2}	der Mittelwert der Messungen beim Probengasdruck p2, in µg/m3;
\mathbf{p}_1	der niedrigste Probengasdruck, in kPa;
p ₂	der höchste Probengasdruck, in kPa;
u _{gp}	die auf die Einfluss des Druckes zurückgehende Standardunsicherheit, in µg/m³;
la	der Jahresgrenzwert, in µg/m ³ ;
\mathbf{c}_{t}	die Prüfgaskonzentration im Bereich des Prüfwertes 2 ($70 - 80$ % des Zertifizierungsbereichs
	von Benzol), in µg/m ³ .

6.20.5 Bewertung

Mindestanforderung erfüllt? ja

6.20.6 Dokumentation

Für die Einstellung eines Probengasüberdrucks wurde den beiden Gaschromatographen über ein T-Stück Prüfgas aus einer Gasmischapparatur im Überschuss angeboten. Die Überschussleitung wurde dabei mit einem Präzisionsnadelventil so weit eingeengt, dass sich der entsprechende Überdruck in der Probenahmeleitung einstellte. Die korrekte Einstellung wurde mit einer Druckanzeige Vacuubrand DVR 2 (rückgeführt auf CPC4000) überwacht.

Für die Einstellung eines Probengasunterdrucks wurde ein Präzisionsnadelventil auf der Probengasseite des T-Stücks installiert. Mit einer zusätzlichen kleinen Pumpe wurde in der Probenahmeleitung ein Unterdruck erzeugt, der über die Regelung der Pumpe eingestellt werden konnte. Die korrekte Einstellung wurde mit einer Druckanzeige Vacuubrand DVR 2 (rückgeführt auf CPC4000) überwacht.

Zur Berechnung des Empfindlichkeitskoeffizienten b_{gp} des Probengasdruckes und der damit verbundenen Standardmessunsicherheit durch Druckänderungen u_{gp} wurden bei einem Unterdruck von 80 kPa und bei einem Überdruck von 110 kPa jeweils fünf aufeinanderfolgende Messungen mit Konzentrationen am Prüfwert 2 durchgeführt. Zur Auswertung wurden jeweils die Mittelwerte der letzten vier Messwerte herangezogen.
Die ermittelten Messdaten sind in Tab. 6.8 dargestellt.

Tab. 6.8: Messdaten für p_1 , p_2 , x_{p1} und x_{p2}

	GC 80001	GC 80004
Druck p1, in kPa	80,0	80,0
Druck p ₂ , in kPa	110,0	110,0
Konzentration x_{p1} , in $\mu g/m^3$	34,4	34,8
Konzentration x_{p2} , in $\mu g/m^3$	36,5	36,5

Damit ergeben sich folgende Werte für den Empfindlichkeitskoeffizient b_{gp} des Probengasdruckes und für die Standardmessunsicherheit durch Druckänderungen u_{gp} .

Tab. 6.9: Rechenwerte für b_{gp} , u_{gp}

	GC 80001	GC 80004
Empfindlichkeitskoeffizient b_{gp} , in ($\mu g/m^3$)/kPa	0,07	0,06
Standardunsicherheit u_{gp} , in $\mu g/m^3$	0,16*	0,13*

*Werte werden zur Berechnung der Gesamtmessunsicherheit herangezogen

6.21 Empfindlichkeitskoeffizient der Umgebungslufttemperatur

6.21.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.7)

Der Empfindlichkeitskoeffizient b_{st} für den Einfluss der Umgebungslufttemperatur am Prüfwert 2 (Referenzpunkt = 70 – 80 % des Höchstwerts des Zertifizierungsbereichs von Benzol) muss kleiner oder gleich 0,08 (μ g/m³)/K sein.

6.21.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

- Prüfstandards (z. B. Prüfgas geeigneter Konzentration)
- Klimakammer

6.21.3 Prüfung

Der Einfluss der Umgebungslufttemperatur auf die Messwertanzeige wird mittels Messungen bei einer Mindesttemperatur von 0°C und einer Höchsttemperatur von 30°C (oder innerhalb der Angaben des Herstellers) bestimmt.

Es sind jeweils fünf aufeinanderfolgende Messungen mit Konzentrationen am Prüfwert 2 durchzuführen. Bei jeder Temperatureinstellung ist der Mittelwert aus den letzten vier Messungen zu berechnen.

6.21.4 Auswertung

Der Einfluss der Umgebungslufttemperatur b_{st} wird nach der folgenden Gleichung berechnet:

$$b_{st} = \left| \frac{(x_2 - x_1)}{(T_{s,2} - T_{s,1})} \right|$$
(Gl. 6.11)

Die auf die Änderung der Umgebungslufttemperatur beim Jahresgrenzwert zurückgehende Standardmessunsicherheit u_{st} wird wie folgt berechnet:

$$u_{st} = \frac{l_a}{c_t} * b_{st} * \sqrt{\frac{(T_{S,2} - T_{S,1})^2}{3}}$$
(Gl. 6.12)

Dabei ist:

$\omega_{\rm st}$ are implification of the form	
x_1 der Mittelwert der Messungen bei $T_{s,1}$, in $\mu g/m^3$;	
x_2 der Mittelwert der Messungen bei $T_{s,2}$, in $\mu g/m^3$;	
T _{S,1} die niedrigste Umgebungslufttemperatur, in K;	
T _{S,2} die höchste Umgebungslufttemperatur, in K;	
ust die auf die Änderung der Umgebungslufttemperatur beim Jahresgrenzwert zurüch	ckgehende
Standardmessunsicherheit, in µg/m ³ ;	
l_a der Jahresgrenzwert, in $\mu g/m^3$;	
c_t die Prüfgaskonzentration im Bereich des Prüfwertes 2, in $\mu g/m^3$.	

6.21.5 Bewertung

Der Empfindlichkeitskoeffizient b_{st} für den Einfluss der Umgebungslufttemperatur überschreitet nicht die Mindestanforderung. Die hier gefundenen Werte werden zur Berechnung der Gesamtmessunsicherheit verwendet.

Mindestanforderung erfüllt? ja

6.21.6 Dokumentation

Zur Bestimmung der Abhängigkeit des Messwertes von der Umgebungstemperatur wurden die Geräte in eine Klimakammer eingebracht und der Empfindlichkeitskoeffizient bei einer Mindesttemperatur von 0°C und einer Höchsttemperatur von 30°C bestimmt. Die Feuchte wurde dabei auf annähernd 50 % geregelt. Folgendes Temperaturprogramm wurde eingestellt:

 $20^{\circ}C \rightarrow 0^{\circ}C \rightarrow 30^{\circ}C \rightarrow 20^{\circ}C$

Bei jeder Temperatureinstellung wurde den beiden Gaschromatographen Prüfgas im Bereich von Prüfwert 2 angeboten. Nach einer Äquilibrierzeit der Klimakammer (ca. 2 h) wurden bei jeder Temperaturstufe zur Auswertung jeweils die letzten vier Messzyklen verwendet.

	GC 80001	GC 80004
Vorgegebene Benzolkonzentration C, in $\mu g/m^3$	38,7	38,7
Niedrigste Umgebungslufttemperatur $T_{S,1}$, in K	273,0	273,0
Höchste Umgebungslufttemperatur T _{S,2} , in K	303,0	303,0
Empfindlichkeitskoeffizient b_{st} , in (µg/m ³)/K	0,03	0,06
Standardmessunsicherheit u_{st} , in $\mu g/m^3$	0,06*	0,12*

Tab. 6.10: Ergebnisse der Untersuchung der Umgebungstemperaturabhängigkeit

*Werte werden zur Berechnung der Gesamtmessunsicherheit herangezogen

6.22 Empfindlichkeitskoeffizient der elektrischen Spannung

6.22.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.8)

Der Empfindlichkeitskoeffizient b_V für den Einfluss der elektrischen Spannung am Prüfwert 2 (Referenzpunkt = 70 - 80 % des Höchstwerts des Zertifizierungsbereichs von Benzol) muss kleiner oder gleich 0,08 (µg/m³)/V sein.

6.22.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

- Prüfstandards (z. B. Prüfgas geeigneter Konzentration)
- Transformator im Regelbereich für Netzspannungen von 210 V bis 245 V.

6.22.3 Prüfung

Die Spannungsabhängigkeit muss beim Minimum und Maximum des vom Hersteller spezifizierten Spannungsbereichs bestimmt werden. Es sind jeweils fünf aufeinanderfolgende Messungen mit Konzentrationen am Prüfwert 2 durchzuführen. Bei jeder Spannungseinstellung ist der Mittelwert aus den letzten vier Messungen zu berechnen.

6.22.4 Auswertung

Der Einfluss der elektrischen Spannung bv wird nach der folgenden Gleichung berechnet:

$$b_V = \left| \frac{(x_{V,2} - x_{V,1})}{(V_2 - V_1)} \right|$$
(Gl. 6.13)

Die auf die Änderung der elektrischen Spannung beim Jahresgrenzwert zurückgehende Standardmessunsicherheit u_V wird wie folgt berechnet:

$$u_V = \frac{l_a}{c_t} * b_V * \sqrt{\frac{(V_2 - V_1)^2}{3}}$$
(Gl. 6.14)

Dabei ist:

$b_{\rm V}$	der Empfindlichkeitskoeffizient der elektrischen Spannung, in $(\mu g/m^3)/V$;
$\mathbf{X}_{\mathrm{V},1}$	der Mittelwert der Messungen bei V ₁ , in μ g/m ³ ;
X V,2	der Mittelwert der Messungen bei V2, in µg/m3;
\mathbf{V}_1	die niedrigste elektrische Spannung, in V;
V_2	die höchste elektrische Spannung, in V;
$u_{\rm V}$	die auf die Änderung der elektrischen Spannung beim Jahresgrenzwert zurückgehende Stan- dardmessunsicherheit, in $\mu g/m^3$;
la	der Jahresgrenzwert, in µg/m ³ ;
c _t	die Prüfgaskonzentration im Bereich des Prüfwertes 2, in $\mu g/m^3$.

6.22.5 Bewertung

Der Empfindlichkeitskoeffizient b_V für den Einfluss der elektrischen Spannung überschreitet nicht die Mindestanforderung. Die hier gefundenen Werte werden zur Berechnung der Gesamtmessunsicherheit verwendet.

Mindestanforderung erfüllt? ja

6.22.6 Dokumentation

Zur Prüfung der Spannungsabhängigkeit wurde mit einer programmierbaren Wechselspannungsquelle (AC-Spannungsquelle ACS-4600-PS) die Netzspannung variiert. Folgende Einstellungen wurden vorgenommen:

 $230 \text{ V} \rightarrow 210 \text{ V} \rightarrow 245 \text{ V} \rightarrow 230 \text{ V}$

Dabei wurde den beiden Gaschromatographen bei jeder Spannungseinstellung Prüfgas im Bereich von Prüfwert 2 angeboten und die letzten vier Messzyklen bei jeder Spannungsstufe wurden zur Auswertung verwendet.

Die Ergebnisse der Untersuchungen zur Spannungsabhängigkeit sind in Tab. 6.11 dargestellt.

	GC 80001	GC 80004
Vorgegebene Benzolkonzentration C, in µg/m ³	36,2	36,2
Niedrigste Spannung V ₁ , in V	210	210
Höchste Spannung V ₂ , in V	245	245
Empfindlichkeitskoeffizient b_V , in (µg/m ³)/V	0,001	0,002
Standardmessunsicherheit u_V , in $\mu g/m^3$	0,002*	0,006*

Tab. 6.11: Ergebnisse	der Untersuch	ung der S	Spannungsa	abhängigkeit
-----------------------	---------------	-----------	------------	--------------

*Werte werden zur Berechnung der Gesamtmessunsicherheit herangezogen

6.23 Querempfindlichkeiten

Das Signal des Analysators ist hinsichtlich möglicher störender Verbindungen zu prüfen, die erwartungsgemäß in Außenluft vorkommen können. Die Querempfindlichkeit gegenüber der relativen Feuchte und gegenüber organischen Verbindungen muss bei der Aufgabe von Prüfgas im Bereich des Jahresgrenzwertes (= $5,0 \mu g/m^3$) bestimmt werden.

6.23.1 Wasserdampf

6.23.1.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.9.2)

Der Einfluss der Störung im Bereich des Jahresgrenzwertes durch Wasserdampf $b_{\rm H2O}$ muss kleiner oder gleich 0,015 (μ g/m³)/(mmol/mol) sein.

6.23.1.2 Prüfung

Der Einfluss von Wasserdampf wird bei einer H_2O -Konzentration von 19 mmol/mol geprüft. Die Prüfung ist bei einer Benzolkonzentration c_t durchzuführen, die ähnlich dem Jahresgrenzwert ist.

6.23.1.3 Auswertung

Der Einfluss von Wasserdampf b_{H2O} bei der Prüfgaskonzentration c_t von Benzol wird nach der folgenden Gleichung berechnet:

$$b_{H_2O} = \frac{(X_{+W} - X_{-W})}{c_W}$$
(Gl. 6.15)

Die auf die Störung durch Wasserdampf beim Jahresgrenzwert zurückgehende Standardmessunsicherheit $u_{\rm H2O}$ wird wie folgt berechnet:

$$u_{H_20} = \frac{l_a}{c_t} * b_{H_20} * \sqrt{\frac{(c_{H_20,max}^2 + c_{H_20,max} * c_{H_20,min} + c_{H_20,min}^2)}{3}}$$
(Gl. 6.16)

Dabei ist:

b _{H2O}	der Empfindlichkeitskoeffizient gegenüber Wasserdampf, in $(\mu g/m^3)/(mmol/mol)$;
$\mathbf{X}_{+\mathbf{W}}$	der Mittelwert der Messungen von c_t in Gegenwart von Wasserdampf, in $\mu g/m^3$;
X-W	der Mittelwert der Messungen von c_t bei Fehlen von Wasserdampf, in $\mu g/m^3$;
cw	die Konzentration von Wasserdampf im Prüfgas, in mmol/mol;
u _{H2O}	die auf die Störung durch Wasserdampf zurückgehende Standardmessunsicherheit, in $\mu g/m^3;$
la	der Jahresgrenzwert, in µg/m ³ ;
c _t	die Prüfgaskonzentration von Benzol im Bereich des Jahresgrenzwertes, in $\mu g/m^3$;
c _{H2O,max}	die höchste Konzentration von Wasserdampf (= 21 mmol/mol), in mmol/mol;
C _{H2O,min}	die niedrigste Konzentration von Wasserdampf (= 6 mmol/mol), in mmol/mol.

6.23.1.4 Bewertung

Mindestanforderung erfüllt? ja

6.23.1.5 Dokumentation

Zur Bestimmung der Querempfindlichkeit wurde den Messgeräten zunächst Prüfgas im Bereich des Jahresgrenzwertes (= $5,0 \ \mu g/m^3$) in Anwesenheit der Störkomponente angeboten. Dabei wurde die Verdünnungsluft über eine Nafionmembran geleitet, die im Gegenstrom mit destilliertem Wasser befeuchtet wird. Ein definierter Feuchtegehalt wird dabei über die Temperatur des Wasserbades eingestellt. Zur Berechnung der Abweichung zwischen dem Messwert im "trockenen" und "feuchten" Prüfgas wurde der Messwert des "feuchten" Prüfgases jeweils anhand des Volumenanteils des Wasserdampfes in der Verdünnungsluft entsprechend korrigiert. Anschließend wurde die gleiche Messung ohne Anwesenheit der Störkomponente durchgeführt. Die Ergebnisse der Untersuchungen zur Querempfindlichkeit gegenüber Wasserdampf bei Aufgabe von Prüfgas im Bereich vom Jahresgrenzwert sind in Tab. 6.12 aufgelistet.

 Tab. 6.12: Ergebnisse der Untersuchungen zur Querempfindlichkeit gegenüber Wasserdampf bei Aufgabe von Prüfgas im Bereich des Jahresgrenzwertes

	GC 80001	GC 80004
Wasserdampfkonzentration im Prüfgas cw, in mmol/mol	19,0	19,0
Minimale Wasserdampfkonzentration c _{H2O,min} , in mmol/mol	6	6
Maximale Wasserdampfkonzentration c _{H2O,max} , in mmol/mol	21	21
Vorgabe Benzolkonzentration c_t , in $\mu g/m^3$	5,3	5,3
Empfindlichkeitskoeffizient b _{H2O} , in (µg/m ³)/(mmol/mol)	0,012	-0,006
Standardmessunsicherheit u_{H2O} , in $\mu g/m^3$	0,163*	-0,081*

*Werte werden zur Berechnung der Gesamtmessunsicherheit herangezogen

6.23.2 Organische Verbindungen

6.23.2.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.9.3)

Der Beitrag des Gemischs aus organischen Verbindungen Δx_{OC} zum Messsignal von Benzol bei einer Konzentration im Bereich des Jahresgrenzwertes (= 5,0 µg/m³) muss kleiner oder gleich 0,25 µg/m³ sein.

6.23.2.2 Prüfung

Eine mögliche Querempfindlichkeit durch organische Verbindungen wird durch Zugabe einer Gasmischung verschiedener organischer Substanzen mit Konzentrationen von jeweils etwa 5 μ g/m³ ins Prüfgas mit einer Benzolkonzentration im Bereich des Jahresgrenzwertes (= 5,0 μ g/m³) geprüft.

6.23.2.3 Auswertung

Die Prüfung auf Störeinflüsse mit dem Gemisch aus organischen Verbindungen soll sicherstellen, dass die Beiträge von organischen Verbindungen, die möglicherweise zusammen mit Benzol eluieren, zu dem Signal von Benzol nicht signifikant sind. Die Ergebnisse der Prüfung müssen die oben genannte Mindestanforderung erfüllen.

$$\Delta x_{OC} = x_{+} - x_{-} \tag{Gl. 6.17}$$

Dabei ist:

Δx_{OC}	der Beitrag des	Gemischs aus organischen	Verbindungen zum S	Signal vo	on Benzol, in $\mu g/m^3$;
-----------------	-----------------	--------------------------	--------------------	-----------	-----------------------------

- x_+ der Mittelwert des Messsignals für Benzol bei der Konzentration c_t (beim Jahresgrenzwert) in
Gegenwart von Störkomponenten, in $\mu g/m^3$;
- x. der Mittelwert des Messsignals f
 ür Benzol bei der Konzentration ct (beim Jahresgrenzwert) bei Abwesenheit von St
 örkomponenten, in μg/m³.

6.23.2.4 Bewertung

Mindestanforderung erfüllt? ja

6.23.2.5 Dokumentation

Zur Bestimmung der Querempfindlichkeit wurde den Messgeräten zunächst Prüfgas im Bereich des Jahresgrenzwertes (= $5,0 \ \mu g/m^3$) unter Zusatz der 11 organischen Störkomponenten angeboten. Die organischen Komponenten wurden dabei mit einem thermischen Massendurchflussregler (MFC) dem Benzolprüfgas beigemischt. Da der Prüfgasvolumenstrom erheblich höher war als der Volumenstrom der beigefügten Störkomponenten (etwa Faktor 3300) konnte in diesem Fall auf eine Korrektur der Ausgangskonzentration von Benzol verzichtet werden. Anschließend wurde die gleiche Messung bei Abwesenheit der Störkomponenten durchgeführt.

Folgende 11 Störkomponenten wurden dabei eingesetzt: Methylcyclopentan (5,1 μ g/m³); 2,2,3-Trimethylbutan (5,0 μ g/m³); 2,4-Dimethylpentan (4,9 μ g/m³); 2,2,4-Trimethylpentan (5,1 μ g/m³); Cyclohexan (5,3 μ g/m³); 2,3-Dimethylpentan (5,0 μ g/m³); 2-Methylhexan (4,9 μ g/m³); 3-Ethylpentan (5,0 μ g/m³); Trichlorethen (5,3 μ g/m³); n-Heptan (5,0 μ g/m³); 1-Butanol (5,2 μ g/m³).

Die Ergebnisse der Untersuchungen zur Querempfindlichkeit gegenüber den organischen Störkomponenten bei Aufgabe von Prüfgas im Bereich vom Jahresgrenzwert sind in Tab. 6.13 aufgelistet.

 Tab. 6.13: Ergebnisse der Untersuchungen zur Querempfindlichkeit gegenüber den organischen Substanzen bei Aufgabe von Prüfgas im Bereich des Jahresgrenzwertes

	GC 80001	GC 80004
Beitrag Störkomponente Δx_{OC} , in $\mu g/m^3$	-0,09	-0,03

6.24 Verschleppen (Memory-Effekt)

6.24.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.4.10)

Die Benzolkonzentration der ersten Nullgasanalyse, die direkt auf die Analyse am Prüfwert 3 (Referenzpunkt = 90 % des Höchstwerts des Zertifizierungsbereichs von Benzol) folgt, muss kleiner oder gleich 1,0 μ g/m³ sein.

6.24.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

• Prüfstandards (z. B. Nullgas, Prüfgas geeigneter Konzentration)

6.24.3 Prüfung

Der Einfluss eines Memory-Effektes, der durch Zurückhalten von Benzol im Messsystem infolge ungeeigneter Materialien oder eines großen Totvolumens hervorgerufen wird, soll durch Aufgabe von Prüfgas (Konzentration bei 90 % des Höchstwerts des Zertifizierungsbereichs von Benzol) gefolgt von Nullgas geprüft werden.

Am Prüfwert 3 müssen zwei aufeinanderfolgende Messungen durchgeführt werden, danach wird die Gasversorgung auf Nullgas umgeschaltet. Das Ergebnis der nachfolgenden Messung von Nullgas wird zur Berechnung von der durch die Verschleppung bedingten Konzentration von Benzol c_m verwendet.

Die Prüfabfolge muss dreimal wiederholt werden.

6.24.4 Auswertung

Die erste Nullgasanalyse, die direkt auf die Analyse der hohen Benzolkonzentration (90 % des Höchstwerts des Zertifizierungsbereichs von Benzol) folgt, darf eine gemessene Benzolkonzentration von 1,0 μ g/m³ nicht übersteigen.

Die auf die Verschleppung zurückgehende Standardunsicherheit um wird wie folgt berechnet:

$$u_m = \frac{l_a}{c_t} * c_m * \sqrt{3} \tag{Gl. 6.18}$$

Dabei ist:

u _m	die auf die Verschleppung zurückgehende Standardunsicherheit, in µg/m³;
c _m	der Einfluss der Verschleppung, in µg/m³;
c _t	die Prüfgaskonzentration von Benzol (ca. 90 % des Höchstwerts des Zertifizierungsbereichs von Benzol) in $\mu\alpha/m^3$:
	von Benzor), in µg/m,
la	der Jahresgrenzwert von Benzol, in µg/m ³ .

6.24.5 Bewertung

Mindestanforderung erfüllt? ja

6.24.6 Dokumentation

Zur Bestimmung des Memory-Effektes werden bei einer Konzentration, die etwa 90 % des Höchstwerts des Zertifizierungsbereichs von Benzol entspricht, zwei Messungen durchgeführt. Danach wird mit Beginn der Probenahme des Messgerätes auf Nullgas umgeschaltet. Diese Vorgehensweise wird dreimal wiederholt. Der Mittelwert aus den drei jeweils ersten Nullgaswerten wird zur Ermittlung des Memory-Effektes herangezogen. In Tab. 6.14 ist das Ergebnis der Bestimmung des Memory-Effektes angegeben.

Tab. 6.14: Ergebnis zur Bestimmung des Memory-Effektes

	GC 80001	GC 80004
Einfluss der Verschleppung c_m , in $\mu g/m^3$	0,1	0,3
Standardunsicherheit u_m , in $\mu g/m^3$	0,01*	0,02*

*Werte werden zur Berechnung der Gesamtmessunsicherheit herangezogen

6.25 Langzeitdrift

6.25.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.5.4)

Beim Feldtest muss über eine Driftperiode von 14 Tagen der größte Wert der Langzeitdrift am Nullpunkt $D_{l,z}$ kleiner oder gleich 0,5 µg/m³ sein und der größte Wert der Langzeitdrift am Prüfwert 2 (Referenzpunkt = 70 – 80 % des Höchstwerts des Zertifizierungsbereichs von Benzol) $D_{l,s}$ muss kleiner oder gleich 10 % sein.

6.25.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

• Prüfstandards (z. B. Prüfgas geeigneter Konzentration)

6.25.3 Prüfung

Während der ersten 14 Tage des Feldtests müssen mindestens alle zwei Tage Messungen am Nullpunkt und mit Prüfgas am Prüfwert 2 durchgeführt werden, in der übrigen Zeit des Feldtests mindestens alle zwei Wochen. Es sind jeweils fünf aufeinander folgende Messungen durchzuführen und die Messwerte sind aufzuzeichnen. Die Langzeitdrift wird dann aus den Mittelwerten der letzten vier Messungen ermittelt.

Während des Feldtests dürfen keine Justierungen des Nullpunkts und des Referenzpunktes am Gerät durchgeführt werden.

6.25.4 Auswertung

Die Langzeitdrift am Nullpunkt D_{l,z} wird nach der folgenden Gleichung berechnet:

$$D_{l,z} = (x_{z,1} - x_{z,0}) \tag{Gl. 6.19}$$

Die Langzeitdrift am Prüfwert 2 D_{l,s} wird nach der folgenden Gleichung berechnet:

$$D_{l,s} = \frac{(x_{s,1} - x_{s,0}) - D_{l,z}}{x_{s,1}} * 100$$
(Gl. 6.20)

Die auf die Langzeitdrift beim Jahresgrenzwert zurückgehende Standardmessunsicherheit $u_{d,l,la}$ wird wie folgt berechnet:

$$u_{d,l,l_a} = \frac{D_{l,s}}{100} * \frac{l_a}{\sqrt{3}}$$
(Gl. 6.21)

Dabei ist:

$D_{l,z}$	die Langzeitdrift am Nullpunkt, in μg/m³;
X _{z,0}	der Mittelwert der Messungen am Nullpunkt zu Beginn der Driftzeitspanne, in µg/m³;
X _{z,1}	der Mittelwert der Messungen am Nullpunkt am Ende der Driftzeitspanne, in $\mu g/m^3$;
D _{l,s}	die Langzeitdrift am Prüfwert 2, in %;
X _{s,0}	der Mittelwert der Messungen am Prüfwert 2 zu Beginn der Driftzeitspanne, in $\mu g/m^3$;
X _{s,1}	der Mittelwert der Messungen am Prüfwert 2 am Ende der Driftzeitspanne, in µg/m³;
u _{d,l,la}	die auf die Langzeitdrift beim Jahresgrenzwert zurückgehende Standardmessunsicherheit, in
	μg/m ,
la	der Jahresgrenzwert, in µg/m ³ .

6.25.5 Bewertung

Mindestanforderung erfüllt? ja

6.25.6 Dokumentation

Zur Bestimmung der Langzeitdrift wurde während des Feldtests in den ersten zwei Wochen in einem Abstand von zwei bis drei Tagen Nullgas und anschließend Prüfgas am Prüfwert 2 mit einer Benzolkonzentration von ca. 35,1 µg/m³ jeweils über mindestens 5 Messzyklen aufgegeben. Zur Auswertung wurden jeweils vier Messzyklen verwendet, der erste Messzyklus wurde als Übergangswert verworfen. In der restlichen Zeit des Feldtests erfolgte die Null- und Prüfgasaufgabe alle eins bis zwei Wochen in analoger Weise.

Die Ergebnisse der Untersuchungen zum Driftverhalten bei Aufgabe von Nullgas und Prüfgas am Prüfwert 2 sind nachfolgend graphisch und tabellarisch dargestellt.

	GC 80001	GC 80004
	D _{1,z} , in µg/m ³	$D_{1,z}$, in $\mu g/m^3$
Mittelwert	-0,01	-0,01
Minimalwert	0,00	0,00
Maximalwert	-0,01	-0,02

Tab. 6.16: Langzeitdrift D_{l,s} des Messwertes bei Prüfgasvorgabe am Prüfwert 2 (Sollwert: 35,1 µg/m³)

	GC 8	80001	GC 8	30004			
	D _{1,s} , in %	u _{d,l,la} , in μg/m ³	D _{1,s} , in %	u _{d,l,la} , in μg/m ³			
Mittelwert	-1,78	-	-0,28	-			
Minimalwert	-0,15	-	0,10	-			
Maximalwert (nach drei Monaten)	-7,76	-0,22*	-4,64	-0,13*			

*Werte werden zur Berechnung der Gesamtmessunsicherheit herangezogen

Wie man den Abb. 6.5 und Abb. 6.6 entnehmen kann, wurde die vorgegebene Driftgrenze bei beiden Gaschromatographen im Feldtest eingehalten. Es werden deshalb drei Monate als Wartungsintervall festgelegt.

Abb. 6.6: Driftverhalten des Messwertes bei Prüfgasvorgabe am Prüfwert 2 (Sollwert: 35,1 µg/m³) beim GC 80004

6.26 Vergleichsstandardabweichung unter Feldbedingungen

6.26.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.5.5)

Die Vergleichsstandardabweichung unter Feldbedingungen $s_{r,f}$ der beiden Messeinrichtungen muss kleiner oder gleich 0,25 μ g/m³ sein.

6.26.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

• Prüfstandards (z. B. Prüfgas geeigneter Konzentration)

6.26.3 Prüfung

Die Vergleichsstandardabweichung unter Feldbedingungen wird während der dreimonatigen Felduntersuchung aus zeitgleichen, fortlaufenden Messungen mit zwei baugleichen Messeinrichtungen am selben Messort als Doppelbestimmung ermittelt.

Dabei kann eine gemeinsame Entnahmeeinrichtung für die zu untersuchende Probenluft verwendet werden. In jedem Fall sind die Probenahmeeinrichtungen der beiden Messeinrichtungen so zueinander anzuordnen, dass beide Messeinrichtungen eine repräsentative Messung desselben Probeluftvolumens durchführen. Auf diese Weise werden systematische Fehler durch räumliche und/oder zeitliche Inhomogenitäten der Massenkonzentrationsverteilung der Messobjekte in der Umgebungsluft reduziert. Die Messsignale der Messeinrichtungen sind als Einzelwerte auf einem elektronischen Datenspeicher aufzuzeichnen.

6.26.4 Auswertung

Die Vergleichsstandardabweichung unter Feldbedingungen wird aus den während des dreimonatigen Zeitraums gemessenen Werten berechnet.

Die Differenz $\Delta x_{f,i}$ für jede (i-te) Parallelmessung wird berechnet aus:

 $\Delta x_{f,i} = x_{f,1,i} - x_{f,2,i}$

(Gl. 6.22)

Die Vergleichsstandardabweichung unter Feldbedingungen s_{r,f} errechnet sich zu:

$$s_{r,f} = \sqrt{\frac{\sum_{i=1}^{n} \Delta x_{f,i}^2}{2n}}$$
(Gl. 6.23)

Die auf die Vergleichspräzision unter Feldbedingungen beim Jahresgrenzwert zurückgehende Standardmessunsicherheit $u_{r,f}$ wird wie folgt berechnet:

$$u_{r,f} = s_{r,f}$$
 (Gl. 6.24)

Dabei ist:

$\Delta x_{f,i}$	die i-te Differenz einer Parallelmessung, in µg/m ³ ;
X _{f,1,i}	das i-te Messergebnis von Messgerät 1, in µg/m3;
X _{f,2,i}	das i-te Messergebnis von Messgerät 2, in µg/m3;
s _{r,f}	die Vergleichsstandardabweichung unter Feldbedingungen, in $\mu g/m^3$;
n	die Anzahl der Parallelmessungen.

6.26.5 Bewertung

Mindestanforderung erfüllt? ja

6.26.6 Dokumentation

Zur Auswertung wurden sämtliche beim Feldversuch ermittelten Außenluftmesswerte herangezogen. Die Daten zur Funktionskontrolle mit Prüfgas und Nullgas wurden nicht berücksichtigt.

Die daraus ermittelten Daten zur Berechnung der Vergleichsstandardabweichung sind in Tab. 6.17 zusammengefasst.

Tab. 6.17: Daten zur Berechnung der Vergleichsstandardabweichung im Feldversuch

	GC 80001	GC 80004				
Anzahl Wertepaare n	87	82				
Mittlere Differenz Δx_f , in $\mu g/m^3$	-0,13					
Mittlere Benzolkonzentration, in µg/m ³	0,98	1,11				
Maximale Benzolkonzentration, in µg/m ³	17,53 19,53					
$s_{r,f} = u_{r,f}$, in $\mu g/m^3$	0,1	7*				

*Wert wird zur Berechnung der Gesamtmessunsicherheit herangezogen

In Abb. 6.7 sind die beim Feldtest ermittelten Daten der beiden Gaschromatographen graphisch dargestellt.

Abb. 6.7: Während des Feldtests gemessene Benzolkonzentrationen

6.27 Kontrollintervall

6.27.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.5.6)

Das Kontrollintervall ist entweder der Zeitraum, in dem die Drift innerhalb des Leistungskriteriums für die Langzeitdrift liegt, oder das vom Hersteller festgelegte Wartungsintervall, je nachdem, was kürzer ist.

6.27.2 Gerätetechnische Ausstattung

Für die Prüfung sind zusätzlich bereitzustellen:

• Prüfstandards (z. B. Nullgas, Prüfgas geeigneter Konzentration)

6.27.3 Prüfung

Während der Feldprüfung ist festzustellen, welche Wartungsarbeiten in welchen Zeitabständen für die einwandfreie Funktionsfähigkeit der Messeinrichtung erforderlich sind. Soweit gerätetechnisch keine aufwendigen Wartungsarbeiten in kürzeren Zeitabständen notwendig sind, ergibt sich das Wartungsintervall im Wesentlichen aus dem Driftverhalten der Messeinrichtung (siehe Kap. 6.25).

Falls eines der Messgeräte während der Feldprüfung Fehlfunktionen aufweist, sind diese zu ermitteln und zu beheben. Die Feldprüfung ist neu zu beginnen, wenn die Fehlfunktion eine Auswirkung auf die Ermittlung des Wartungsintervalls hat.

6.27.4 Auswertung

Zur Auswertung werden die jeweiligen Messwerte mit der Primäreinstellung verglichen und die Abweichungen für den Nullpunkt und Referenzpunkt ermittelt. Das Ende des Wartungsintervalls ist dann erreicht, wenn die Abweichungen die erlaubten Driften übersteigen.

Ein kürzeres Wartungsintervall, als das durch die Driftuntersuchung ermittelte ergibt sich dann, wenn andere Wartungsarbeiten in kürzeren Zeitabständen erforderlich sind.

6.27.5 Bewertung

Während des dreimonatigen Feldversuches waren keine Wartungsarbeiten am Messgerät notwendig. Der Trägergasverbrauch (Stickstoff 5.0) beträgt pro Gerät ca. 15 ml/min. Daraus ergibt sich bei Verwendung einer 50 Liter-Druckgasflasche eine Standzeit von mehr als ein Jahr für ein Gerät.

Das Wartungsintervall wird folglich nur durch das Driftverhalten der Geräte bestimmt. (siehe Kap.6.25). Bei der Ermittlung der Langzeitdrift im Messzeitraum von 95 Tagen wurde die vorgegebene Driftgrenze bei beiden Gaschromatographen im Feldtest eingehalten. Es werden deshalb drei Monate als Wartungsintervall festgelegt. Mindestanforderung erfüllt? ja

6.27.6 Dokumentation

Siehe Kap. 6.25.

6.28 Verfügbarkeit

6.28.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.5.7)

Die Verfügbarkeit der Messeinrichtung ist in der Feldprüfung zu ermitteln und muss mindestens 90 % betragen.

6.28.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.28.3 Prüfung

Die Verfügbarkeit der Messeinrichtung wird in der Feldprüfung ermittelt. Hierzu werden der Start- und der Endzeitpunkt der Feldprüfung dokumentiert. Weiterhin werden alle Unterbrechungen der Prüfung, z. B. durch Störungen oder Wartungsarbeiten, mit dem jeweiligen Anfangs- und Endzeitpunkt dokumentiert.

6.28.4 Auswertung

Aus der Differenz zwischen Endzeitpunkt und Startzeitpunkt ist die Einsatzzeit als Bezugszeit der Verfügbarkeit zu berechnen. Weiterhin werden aus der Dokumentation die Zeiten ermittelt, in denen die Messeinrichtung keine für die kontinuierliche Erfassung der Immissionen verwertbaren Messwerte geliefert hat. Die Ergebnisse sind in einer Tabelle zusammenzufassen.

Die für die Berechnung der Verfügbarkeit zu berücksichtigende Zeitspanne ist diejenige Zeitspanne in der Feldprüfung, in der valide Messdaten für die Außenluftkonzentrationen gewonnen werden. Dabei darf die für Kalibrierungen, Konditionierung der Probengasleitungen und Filter und Wartungsarbeiten aufgewendete Zeit nicht einbezogen werden.

Die Verfügbarkeit des Messgeräts ist nach der folgenden Gleichung zu berechnen:

$$A = \frac{t_{\rm u}}{t_{\rm t}} \cdot 100 \%$$
 (Gl. 6.25)

Dabei ist:

- *A* die Verfügbarkeit des Messgeräts;
- *t*_u die gesamte Zeitspanne mit validen Messwerten, in h;
- *t*t die gesamte Zeitspanne der Feldprüfung abzüglich der Zeit für Kalibrierung, Konditionierung und Wartung, in h.

6.28.5 Bewertung

Mindestanforderung erfüllt? ja

6.28.6 Dokumentation

Der Feldtest wurde in der Zeit vom 28.10.2022 bis zum 31.01.2023 auf dem Versuchsgelände der LUBW durchgeführt. Während dieser Zeit wurde in den ersten zwei Wochen im Abstand von 2 bzw. 3 Tagen eine Funktionskontrolle durch externe Aufschaltung von Nullgas und Prüfgas durchgeführt. Nach Ablauf der ersten zwei Wochen wurde die Funktionskontrolle alle eins bis zwei Wochen durchgeführt.

Die Ergebnisse zur Berechnung der Verfügbarkeit sind in Tab. 6.18 zusammengefasst.

		GC 80001	GC 80004					
Beginn Feldtest		28.10.2022; 10:30 Uhr						
Ende Feldtest		31.01.2023; 15:00 Uhr						
Einsatzzeit t _E *	h:min	2238:00	2238:00					
Kalibrierzeit t _K	h:min	42:30	42:30					
Ausfallzeit t _A	h:min	0:00	0:00					
Wartungszeit tw	h:min	0:00	0:00					
Verfügbarkeit A.	%	100	100					

Tab. 6.18: Ergebnisse zur Ermittlung der Verfügbarkeit der beiden Messeinrichtungen

 $Mit: t_u = t_E - t_A - t_K - t_W \qquad und \qquad t_t = t_E - t_K - t_W$

*Während des Feldtests mussten in der Station und an der Probenahme verschiedene Wartungsarbeiten durchgeführt werden, außerdem gab es Probleme bei der Beidotierung. Da dies zu einer Beeinträchtigung der Messungen führte, wurden die entsprechenden Messwerte bei den Auswertungen nicht berücksichtigt und von der Einsatzzeit abgezogen. Insgesamt kam es dadurch zu einem Ausfall von 46 h30°min. Der Feldtest wurde dementsprechend um drei Tage verlängert.

6.29 Gesamtmessunsicherheit

6.29.1 Mindestanforderung (DIN EN 14662-3: 2016-02 Kap. 8.6 und Anhang E)

Die erweiterte Messunsicherheit der Messeinrichtung ist zu ermitteln. Der ermittelte Wert darf die Vorgaben der EU-Tochterrichtlinien zur Luftqualität nicht überschreiten (Anforderung an die Datenqualität: Für Benzol ist bei kontinuierlichen Messungen für die prozentuale erweiterte Messunsicherheit ein Maximalwert von 25 % zulässig).

6.29.2 Gerätetechnische Ausstattung

Zusätzliche Geräte werden nicht benötigt.

6.29.3 Prüfung

Die Gesamtmessunsicherheit der Messwerte der Messeinrichtung ist für die in der Eignungsprüfung ermittelten Verfahrenskenngrößen der Messeinrichtung zusammenzustellen.

6.29.4 Auswertung

Die Eignungsanerkennung des Messgeräts besteht aus den folgenden Schritten:

- a) Der Wert jeder einzelnen, im Labor geprüften Leistungskenngröße muss das in Tabelle 1 der DIN EN 14662-3: 2016-02 angegebene Kriterium erfüllen.
- b) Die erweiterte Messunsicherheit, die aus den auf die in den Laborprüfungen ermittelten Werte der spezifischen Leistungskenngrößen zurückgehenden Standardunsicherheiten berechnet wurde, muss das in Anhang I der Richtlinie 2008/50/EG angegebene Kriterium von 25 % (für ortsfeste Messungen) erfüllen. Dieses Kriterium ist die maximal zulässige Unsicherheit von Einzelmessungen für kontinuierliche Messungen beim Grenzwert.
- c) Der Wert jeder einzelnen, in der Feldprüfung geprüften Leistungskenngröße muss das in Tabelle 1 der DIN EN 14662-3: 2016-02 angegebene Kriterium erfüllen.
- d) Die erweiterte Messunsicherheit, die aus den auf die in den Labor- und Feldprüfungen ermittelten Werte der spezifischen Leistungskenngrößen zurückgehenden Standardunsicherheiten berechnet wurde, muss das in Anhang I der Richtlinie 2008/50/EG angegebene Kriterium von 25 % (für ortsfeste Messungen) erfüllen. Dieses Kriterium ist die maximal zulässige Unsicherheit von Einzelmessungen für kontinuierliche Messungen beim Grenzwert.

Das Messgerät kann als eignungsgeprüft bekannt gegeben werden, wenn alle vier Anforderungen erfüllt sind.

Die kombinierte Messunsicherheit uc wird aus den einzelnen Beiträgen nach der folgenden Gleichung berechnet:

$$u_c = \sqrt{\sum u_i^2} \tag{Gl. 6.26}$$

Die absolute erweiterte Messunsicherheit U ist wie folgt zu berechnen:

$$U = k * u_c \tag{G1. 6.27}$$

Die relative erweiterte Messunsicherheit W ist wie folgt zu berechnen:

$$W = \frac{U}{l_a} * 100\%$$
 (Gl. 6.28)

Dabei ist:

 u_c die kombinierte Standardunsicherheit, in $\mu g/m^3$;

 u_i der partielle Beitrag zur kombinierten Standardunsicherheit, in $\mu g/m^3$;

U die absolute erweiterte Messunsicherheit, in $\mu g/m^3$;

k der Erweiterungsfaktor (hier k = 2) mit einem Vertrauensniveau von 95 %;

- W die relative erweiterte Messunsicherheit, in %;
- $l_a \qquad \ \ der \ \ Jahresgrenzwert, \ in \ \mu g/m^3;$

Die Werte der nachfolgend aufgeführten Unsicherheiten sind in die Berechnung der erweiterten Messunsicherheit nach den Laborprüfungen (Tab. 6.19) bzw. nach den Labor- und Feldprüfungen (Tab. 6.20) einzubeziehen.

 Tab. 6.19: Zur Berechnung der erweiterten Messunsicherheit nach den Laborprüfungen einzubeziehende Standardunsicherheiten

Standardunsicherheit aufgrund	Symbol
Wiederholstandardabweichung beim Jahresgrenzwert	u_r
Abweichung der Linearität beim Jahresgrenzwert	u_l
Änderung des Probengasdrucks beim Jahresgrenzwert	u_{gp}
Änderung der Umgebungstemperatur beim Jahresgrenzwert	u_{st}
Änderung der elektrischen Spannung beim Jahresgrenzwert	u_V
Störkomponente H ₂ O (bei 19 mmol/mol) beim Jahresgrenzwert	u _{H2O}
Verschleppung (Memory-Effekt)	u_m
Differenz Proben- / Kalibriergaseingang	$u_{\Delta sc}$
Unsicherheit des Kalibriergases	<i>u_{cg}</i>

 Tab. 6.20: Zur Berechnung der erweiterten Messunsicherheit nach den Labor- und Feldprüfungen einzubeziehende Standardunsicherheiten

Standardunsicherheit aufgrund	Symbol
Wiederholstandardabweichung beim Jahresgrenzwert ^a	u_r
Abweichung der Linearität beim Jahresgrenzwert	u_l
Änderung des Probengasdrucks beim Jahresgrenzwert	u_{gp}
Änderung der Umgebungstemperatur beim Jahresgrenzwert	u_{st}
Änderung der elektrischen Spannung beim Jahresgrenzwert	u_V
Störkomponente H ₂ O (bei 19 mmol/mol) beim Jahresgrenzwert	u _{H2O}
Verschleppung (Memory-Effekt)	u_m
Vergleichsstandardabweichung unter Feldbedingungen ^a	$u_{r,f}$
Langzeitdrift beim Jahresgrenzwert	$u_{d,l,la}$
Differenz Proben- / Kalibriergaseingang	<i>U</i> _{Dsc}
Unsicherheit des Kalibriergases	u_{cg}

^a Zur Berechnung der kombinierten Standardunsicherheit ist entweder die auf die Wiederholstandardabweichung beim Jahresgrenzwert zurückgehende oder die auf die Vergleichsstandardabweichung unter Feldbedingungen zurückgehende Unsicherheit zu wählen, je nachdem, welcher Wert der größere ist.

6.29.5 Bewertung

Mindestanforderung erfüllt? ja

6.29.6 Dokumentation

Die Berechnung der Gesamtunsicherheit erfolgte gemäß den Vorgaben von Anhang E der DIN EN 14662-3: 2016-02. In Tab. 6.21 und Tab. 6.22 sind die erweiterten Messunsicherheiten der Laborprüfungen bzw. der Labor- und Feldprüfungen angegeben, die mit Hilfe der in den Labor- und Felduntersuchungen festgestellten Verfahrenskenngrößen berechnet wurden.

Parameter	Mindest- anforderung		Wert	Vorge Benzo	gebene Ikonz. C _t	E	mpfindlichkeits- koeffizient X _{min} X _{max} u				u ²				
Wiederholstandardabweichung	≤ 0,25 µg/m³	0,02	µg/m³	5,3	µg/m³	1						0,005	µg/m³	0,00002	(µg/m ³) ²
Größte Abweichung von der Linearität	≤ 5,0 %	-2,15	%	2,7	µg/m³			-				-0,06	µg/m³	0,004	(µg/m³)²
Änderung des Probengasdrucks	≤ 0,1 (µg/m³)/kPa	0,07	(µg/m³)/kPa	36,2	µg/m³	0,07	(µg/m³)/kPa	80	kPa	110	kPa	0,16	µg/m³	0,027	(µg/m ³) ²
Änderung der Umgebungstemperatur	≤ 0,08 (µg/m³)/K	0,03	(µg/m³)/K	38,7	µg/m³	0,03	(µg/m³)/K	273	K	303	К	0,06	µg/m³	0,003	(µg/m ³) ²
Änderung der elektrischen Spannung	≤ 0,08 (µg/m³)/V	0,001	(µg/m³)/V	36,2	µg/m³	0,00	(µg/m³)/V	210	V	245	٧	0,002	µg/m³	0,000003	(µg/m ³) ²
Störkomponente H ₂ O (19 mmol/mol)	≤ 0,015 (µg/m³)/(mmol/mol)	0,012	(µg/m³)/(mmol/mol)	5,3	µg/m³	0,012	(µg/m³)/(mmol/mol)	0,6	Vol-%	2,1	Vol-%	0,162	µg/m³	0,02615	(µg/m ³) ²
Memory-Effekt	≤ 1,0 µg/m³	0,10	µg/m³	44,5	µg/m³	1						0,01	µg/m³	0,00004	(µg/m ³) ²
Vergleichstabw. im Feld	≤ 0,25 µg/m³	0,17	µg/m³									0,17	µg/m³	0,03	(µg/m ³) ²
Langzeitdrift am Spanwert	≤ 10,0 %	-7,8	%	35,1	µg/m³					1		-0,22	µg/m³	0,050	(µg/m³)²
Kurzzeitdrift am Spanwert	≤ 2,0 µg/m³	0,32	µg/m³	36,2	µg/m³										
Differenz Probengas /Kalibriergaseingang*	≤ 1,0 %	k. A.	%			1		1				1			_
Kontrollintervall	14 Tage	3	Monate												
Verfügbarkeit	≥ 90 %	100,00	%	1		_						1			
Kalibriergas	k. A.	2,1	%	1			1	1		12.1		0,05	µg/m³	0,003	(µg/m³)²
Benzol Jahresgrenzwert	5,0	µg/m³	J	*kein s	eparater l	Kalibrier	gaseingang vorhande	n			-				
komb. Unsicherheit Labor	0,25	ppb	A. 1. 1994							X _{min}	Minimal	wert der	Einflussg	jröße	
Rel. Erw. Messunsicherheit Labor	10,1	%								Xmax	Maximal	wert der	Einfluss	größe	
komb. Unsicherheit Labor + Feld	0,38	ppb													
Rel. Erw. Messunsicherheit Labor + Feld	15,1	%													

Tab. 6.21: Erweiterte Messunsicherheiten f ür den Gaschromatographen GC 80001

Parameter	Mindest- anforderung		Wert	Vorge Benzo	gebene Ikonz. C _t	Er	npfindlichkeits- koeffizient	3	X _{min}	X _{max} u		u ²	u ²		
Wiederholstandardabweichung	≤ 0,25 µg/m³	0,02	µg/m³	5,3	µg/m³							0,01	µg/m³	0,00003	(µg/m³)²
Größte Abweichung von der Linearität	≤ 5,0 %	-2,97	%	2,7	µg/m³	1		1			1.1	-0,09	µg/m³	0,007	(µg/m ³) ²
Änderung des Probengasdrucks	≤ 0,1 (µg/m³)/kPa	0,06	(µg/m³)/kPa	36,2	µg/m³	0,06	(µg/m³)/kPa	80	kPa	110	kPa	0,13	µg/m³	0,018	(µg/m ³) ²
Änderung der Umgebungstemperatur	≤ 0,08 (µg/m³)/K	0,06	(µg/m³)/K	38,7	µg/m³	0,06	(µg/m³)/K	273	К	303	К	0,12	µg/m³	0,02	(µg/m ³) ²
Änderung der elektrischen Spannung	≤ 0,08 (µg/m³)/V	0,002	(µg/m³)/V	36,2	µg/m³	0,00	(µg/m³)/V	210	٧	245	V	0,006	µg/m³	0,0000	(µg/m³)²
Störkomponente H ₂ O (19 mmol/mol)	≤ 0,015 (µg/m³)/(mmol/mol)	-0,006	(µg/m³)/(mmol/mol)	5,3	µg/m³	-0,0060) (µg/m³)/(mmol/mol)	0,6	Vol-%	2,1	Vol-%	-0,080	µg/m³	0,00643	(µg/m³)²
Memory-Effekt	≤ 1,0 µg/m³	0,29	µg/m³	44,5	µg/m³	1		1.00	26.2			0,02	µg/m³	0,000	(µg/m ³) ²
Vergleichstabw. im Feld	≤ 0,25 µg/m³	0,17	µg/m³									0,17	µg/m³	0,03	(µg/m³)²
Langzeitdrift am Spanwert	≤ 10,0 %	-4,6	%	35,1	µg/m³							-0,13	µg/m³	0,018	(µg/m ³) ²
Kurzzeitdrift am Spanwert	≤ 2,0 µg/m³	0,43	µg/m³	36,2	µg/m³							1.00			1.11
Differenz Probengas /Kalibriergaseingang*	≤ 1,0 %	k. A.	%			· · · · ·									12.1
Kontrollintervall	14 Tage	3	Monate			12			1.5			1		1000	- T
Verfügbarkeit	≥ 90 %	100,00	%			1								1.12	
Kalibriergas	k. A.	2,1	%						_			0,05	µg/m³	0,003	(µg/m³)²
Benzol Jahresgrenzwert	5,0	µg/m³	1	*kein s	eparater l	Kalibrier	gaseingang vorhande	n							
komb. Unsicherheit Labor	0,22	ppb								Xmin	Minimal	wert der	Einflussg	röße	
Rel. Erw. Messunsicherheit Labor	9,0	%								Xmax	Maxima	lwert der	Einfluss	größe	
komb. Unsicherheit Labor + Feld	0,31	ppb													
Rel. Erw. Messunsicherheit Labor + Feld	12,5	%													

Tab. 6.22: Erweiterte Messunsicherheiten f ür den Gaschromatographen GC 80004

AED

SYNTECH SPECTRAS

1.1 Order data		
Serial number	80001	
Model	GCX55	
Туре	601	
Orderd by	Synspec BV	Customer nr.:
Order number		Our order nr.:
Order date		
Delivery date	1-1-2021	
1.2 GC description		Serial number
Application	BTEX	
Detector 1	PID	P302
Detector 2		
Valve 1	AFP ELDV2	147823007
Valve 2		
Pump	KNF-NMP830 KNDC	16.12509264
Sample system	Steursma V02	
Sample loop (ml)		

Precon system Graphsphere 2016 MFC Bronkhorst IQ+ M20209146G Oven Isothermal Analysis column type CP70003 1025589 Analysis column packing SY-1 Analysis column length (m) 26 Backflush column type CP70003 Backflush column packing SY-1 Backfush column length (m) 4

1.3 Hardware and software data

Industrial computer type	ASRock	SBC-210			
Processor type	Intel® Ba	ytrail /Baytr	ail-I SoC Pro	cessor	
Memory	4Gb				
Hard disk type	InnoDisk	Corp mS/	ATA 3ME4 A	TA Device	
Hard disk size	64GB				
Oparating system	Windows	10 Enterpri	se LTSC 20	19	
Oparating system service pack					OualityMasters
Oparating system version	GCX55-V		8		
Oparating system language	English (United State	es)		
Watch dog version	WDAUTO	0			
GC software version	6.4.2.19				9001
GC software language	Duits				
MX board version	9				
PIC software versions	010B	0204	0305	1.9	(F
Options	temperat	ure controlle	er board firm		

1.4 General data

AED

SYNTECH SPECTRAS

1.1 Order data		
Serial number	80004	
Model	GCX55	
Туре	601	
Orderd by	Synspec BV	Customer nr.:
Order number		Our order nr.:
Order date		
Delivery date	1-1-2021	
1.2 GC description		Serial number
Application	BTEX	
Detector 1	PID	
Detector 2	-	
Valve 1	AFP ELDV2	
Valve 2	-	
Pump	KNF-NMP830 KNDC	16.12509294
Sample system	Steursma V02	2430
Sample loop (ml)		
Precon system	Graphsphere 2016	
MFC	Bronkhorst IQ+	
Oven	Isothermal	
Analysis column type	CP70003	1025736
Analysis column packing	SY-1	
Analysis column length (m)	26	
Backflush column type	CP70003	
Backflush column packing	SY-1	

1.3 Hardware and software data

4

Backfush column length (m)

Industrial computer type	ASRock SBC-210						
Processor type	Intel® Ba	aytrail /Baytr	ail-I SoC Pro	cessor			
Memory	4Gb						
Hard disk type	InnoDisk	Corp mS.	ATA 3ME4 A	TA Device			
Hard disk size	64GB						
Oparating system	Windows	s 10 Enterpri	se LTSC 201	19			
Oparating system service pack		OualityMas					
Oparating system version	GCX55-\	W10-64B-V0)1		8		
Oparating system language	English (United State	es)				
Watch dog version	WDAUT	0			ISO IV		
GC software version	6.4.2.19				9001		
GC software language	Duits				BE		
MX board version	9						
PIC software versions	010B	0204	0305	1.9	(F		
Options	Tempera	ture control	ler board firm				

1.4 General data

Basishandbuch für die Synspec GCX55-Analysator

25.01.2023 Version 1.1

Zernike Campus De Deimten 1 9747 AV Groningen die Niederlande <u>info@synspec.nl</u>

Basishandbuch für die Synspec GCX55-Analysator

25.01.2023 Version 1.1

Basishandbuch für die Synspec GCX55 analysator 25.1.2023 Version 1.1 ©2021 Synspec

Siehe bitte unsere Verkaufsbedingungen auf unserer Website www.synspec.nl

Inhaltsverzeichnis

1.	Die GCX55 analysator	. 6
1.1	Revisionsprotokoll	6
1.2	Einführung	7
1.3	Verschiedene Serienkonfigurationen	7
1.4	Überblick	8
1.4.	1 Die obere Seite des GCX55	. 8
1.4.	2 Die untere Seite des GCX55	. 9
1.4.	3 Die Rückseite des GCX55	10
1.5	Die Hauptelemente	11
15	1 Die Detektoren	11
1.5	2 Die andere Hauntteile	11
1.5	3 Das Rückspül-Reinigungssystem	17
1.5	4 Das Probenahmesvstem	18
1.6	Flussdiagramm Gase	19
2.	Inbetriebnahme des GCX55	20
2.1	Sicherheitshinweis	20
2.2	Garantie	21
2.3	Auspacken	22
2.3.	1 Inhalt	22
2.3.	2 Sichtprüfung	22
2.4	Installation	23
2.4.	1 Anforderungen und Informationen	23
2.4.	2 Platzierung des Analysators	24
2.4.	3 Gasanschlüsse	24
2.4.	4 Kalibrier- und Validierungsgas	24
2.4.	5 Probenkonditionierung	25
2.5	Die ersten Messungen	26
2.5.	1 Einschalten	26
2.5.	2 Starten des Programms	26
2.5.	3 Der erste Lauf	26
2.5.	4 Datendatei	27
2.5.	5 Stoppen des Programms	28
2.5.	6 Abschalten der Anlage :	29
2.6	Zeit erforderlich, um den GCX55 für BTEX einzurichten und aufzuwärmen	29
3.	Arbeiten mit dem GCX55	30
3.1	Kontinuierliche Messungen	30
31	1 Retentionszeit und Peakfenster	30
3.1.	2 Temperaturdiagramm	31
3.1	3 Synchronisation von Messungen	31
3.2	Qualitätssicherung und Qualitätskontrolle	32
J.Z 2 2	1 Ouglitätskontrolle	32
3.2.	2 Qualitätssicherung	33
3.2.	3 Standard Operating Procedure (SOP)	33
.2. קיב	Validierung und Kalibrierung	25 22
J.J 22	1 Das Prinzin der Kalibrierung	22
3.3. 2.2	 Das i ninzip dei Kalibriermischungen Messen von Kalibriermischungen 	25
J.J. 2 2	2 Recention des Imrechnungsfaktors	32
ן.ט. קיב	Δοιοσιαταίης μου οπαιοσιαταιχογακίοι ο παιοσιαταιχογάκου ο ποιοσιαταικοποιοσιατά τη στο στατά τη στο στατά τη σ Δ Validierung	36
5.5.		55

	3.3.	5	Kalibrierungsübersicht	37
3	.4	Date	enregistrierung und Datenverarbeitung	37
	3.4.	1	Datenregistrierung	38
	3.4.	2	Datenverarbeitung	39
3	.5	Soft	ware und Elektronik	40
3	.6	Gek	ühlte Anreicherung	40
3	.7	Stat	pilitätskompensation des PID-Detektors	40
3	.8	Übe	rsicht Systemalarme	41
4.		Wa	rtung	44
4	.1	War	tungshäufigkeit	44
	4.1.	1	Kein Alarm an den Ausgängen während der Wartung	45
	4.1.	2	Erforderliche Ausrüstung	45
4	.2	Offr	ien der Maschine	46
	4.2.	1	Verdeck öffnen	46
	4.2.	2	Offnen des Bodens	47
4	.3	Dich	ntheitsprüfung	47
	4.3.	1	Trägergas	47
_	4.3.	2	Probe system	49
4	.4	Anre	eicherungsröhrchen	50
	4.4.	1	Wartungsschritte	50
_	4.4.	2	Ersatz	51
4	5	Вур	asspumpe	51
_	4.5.	1	Ersetzungsschritte	51
4	6	Filte	er	51
_	4.6.	1	Ersetzungsschritte	52
4	.7	PID		53
	4.7.	1	Ersetzungsschritte	53
	4.7.	2	Demontageschritte	53
_	4.7.	3	Montage schritte	54
4	.8	FID		55
	4.8.	1	Ersetzungsschritte	55
_	4.8.	2	Ersetzungsschritte	55
4	9	Date	eisicherung	57
	4.9.	1	Wartungsschritte	57
4	.10	Date	enkommunikation mit externen Datenloggern	57
5.		Feh	lerbehehung.	58
5	1	Onti	imierung	58
5		Foh	larbahahungstahallan	50
	52	1	Startnrohleme	59
	5.2	2	"Starthereit" aher startet nicht	60
	5.2.	2	Messungen sind diskontinuierlich	61
	5.2	4	Keine Peaks. (fast) flache Grundlinie.	62
	5.2	5	Instabile Retentionszeiten	63
	5.2.	6	Stabilität des Kalibrierergebnisses	64
	5.2.	7	Detektorsignal.	65
	5.2.	8	Linearität und Reproduzierbarkeit von Verbindungen.	66
	5.2.	9	Peak integration.	67
	5.2.	10	Temperatur alarm	67
	5.2.	11	Druck- und Durchflussalarm	69
	5.2.	12	Datenverarbeitung und Kommunikation	70

71
71
71
•

1. Die GCX55 analysator

Dieses Kapitel bietet eine Einführung und einen Überblick über die GCX55-Serie, bietet aber auch weitere Informationen zu den Hauptelementen.

1.1 Revisionsprotokoll

Version	Überarbeitung	Seite	Inhalt	
1.0	2021.01.01		Erste Veröffentlichung	JWI
1.1	2023.01.25	7,29	Einfuerung; Rüst- und Einlaufzeiten der Messeinrichtungen sowie das Gewicht der Geräte	HBA

1.2 Einführung

Dies ist die Bedienungsanleitung für die grundlegende Handhabung des GCX55 und kann ohne Vorankündigung aktualisiert werden. Ein vollständiges Handbuch mit allen Kommunikationsmöglichkeiten, Installationsanleitungen, Feinabstimmung und Anpassung der Anwendungen ist auf Anfrage erhältlich (nur Englisch). Der GCX55 ist der Nachfolger des GC955. Kontaktieren Sie uns unter info@synspec.nl oder rufen Sie uns unter +31505266454 an oder suchen Sie Ihren lokalen Vertriebspartner auf unserer Website unter www.synspec.nl. Unsere Bürozeiten sind Montag bis Freitag von 08:00 bis 17:00 Uhr MEZ (GMT +1/ UTC+1).

1.3 Verschiedene Serienkonfigurationen

Der Gaschromatograph GCX55 ist in 7 verschiedenen Typen erhältlich, die für die unterschiedlichen Anforderungen der zu messenden Verbindungen, die Feldbedingungen und die unterschiedlichen Kundenanforderungen optimiert sind.

Ein GCX55 in basisausführung beinhaltet:

- 1. Probenahme- und Injektionseinheit für gasförmige Proben: wahlweise mit Proberöhrchen oder mit Anreicherungsröhrchen, bei Raumtemperatur oder gekühlt.
- 2. Säule: eine gepackte Säule oder eine Kapillarsäule.
- 3. Ofen zur Temperaturregelung der Säule: isotherm oder temperaturprogrammiert.
- 4. Ein oder zwei Detektor(en) (PID, FID, TCD, ECD usw.)
- 5. Integrierter Industriecomputer.

Beinhaltet	100	200	300	400	500	600	800
Proberohr	~		~		~		
Anreicherung		~		~		~	
Gepackte Säule	 ✓ 	~					
Isothermischer Ofen	 ✓ 	<	<	<			
Kapillarsäule			~	~	~	~	
Ofen mit							
Temperaturprogrammierung					~	~	
Gekühltes							
Anreicherungsröhrchen							*

Eine Übersicht der größten Unterschiede der Serie, wobei "GCX55-815" zur 800er-Serie gehört.

1.4 Überblick

1.4.1 Die obere Seite des GCX55

Bild 1 Übersicht oben geöffnet

- 1. Ofen linkes Detektorfach mit PID und/oder FID.
- 2. Mittlerer Ventilraum des Ofens.
- 3. Rechtes Säulenfach des Ofens.
- 4. Mass Flow Controllers(s)
- 5. Anreicherungsröhrchen und die Stromversorgung.
- 6. MX8-Hauptelektronikplatine (auf der linken Seite).
- 7. Stromverteilerplatine (auf der rechten Seite).
- 8. PC-Netzteil
- 9. Rechner (Im innern des Gehäuses)

1.4.2 Die untere Seite des GCX55

Bild 2 Geöffnete untere Seite

- 1. Netzanschluss
- 2. Ofentürzylinder
- 3. Rechner Anschlussplatine
- 4. Massendurchflussregler für Nullluft und Wasserstoff
- 5. Ofenmotor
- 6. Solenoid block 1. Für den Ofentürzylinder und das 10-wege Ventil
- 7. Gas anschlüsse zu dem Ofen
- 8. Solenoid block 2 Für die Gasschaltung
- 9. Druck platine
- 10. Filter(s).
- 11. Massendurchflussregler für Stickstoff
- 12. Pumpe
- 13. Magnetventil für die Umgebungsluft pumpe und Probenzylinder oder Probenpumpe
- 14. Probenzylinder, einschließlich seiner Steuerplatine und Druckplatine
- 15. Massendurchflussreglerplatine

1.4.3 Die Rückseite des GCX55

- 1. Stickstoff-/Trägergas Einlass.
- 2. Probengas Einlass.
- 3. Probe Bypass.
- 4. Null-luft Einlass.
- 5. Kallibrierungsgas Einlass.
- 6. Pumpe Auslauf.
- 7. Wasserstoff Einlass.
- 8. Überlauf Gasschaltung.
- 9. Detektor Auslauf
- 10. Ofentür Lüftungsöffnungen.
- 11. Stromnetz Anschluss, inklusieve Sicherungen.
- 12. Vorsaule Auslauf
- 13. Rückwandplatine mit Rechner-anschlüsse
- 14. Analogeingang
- 15. Analogausgang (Spannung/Strom)
- 16. Digitaler Ausgänge (Relais)

1.5 Die Hauptelemente

1.5.1 Die Detektoren

Der GCX55 kann mit einem (oder zwei) der folgenden Detektoren geliefert werden:

1.5.2 Die andere Hauptteile

10-wege Ventil

Einbauort: Mittleres Ofenteil Hersteller: AFP Funktion: Das schalten von Gasströmen

File Options	Language Help 💙 Tabs	
Rundata 10000 9000 8000 7000 6000 5000	■ Fledna → Program Edr ☐ Cableation Ø Geople / Autoimensation Ø 10-state 2 = 10 2 = 10 2 = 10 3 = 100	Speicherort: Verknüpfung zur Anwendung auf dem Desktop Hersteller: Synspec
4000 3000 1000 0 1000 SYN GCX55	5 4 6 6 7 8 6 10 11 12 13 14 15 16 17 10 15 20 TOUT 10 20 10 0 11 10 13 14 15 10 17 10 15 20 SPEC 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Funktion: Steuerung des Gaschromatographen, Kommunikation mit externen Geräten, Benutzerschnittstelle

1.5.3 Das Rückspül-Reinigungssystem

Die Trennsäule besteht aus zwei Teilen: einer Vorsäule und eine Analysesäule. Ziel ist es, ein langes Warten auf das Ende der Analyse zu vermeiden. Bei einer einzelnen Säule wird dies durch die Notwendigkeit verursacht, auf die Elution der am höchsten siedenden Verbindung zu warten.

Bild 4 Gaschromatographische Trennung mit Probenrörchen, Vorsäule und Analysesäule.

Das Rückspül- Vorsäule -Prinzip funktioniert sowie folgt aus Bild 4:

- 1. Die Probe wird in die Anreicherung geleitet.
- 2. Sobald genügend Probe genommen ist, wird die Anreicherung erhitzt, die angereichte Stoffe desorbieren, wonach die gesamte Probe auf die Vorsäule gebracht wird.
- 3. Die Stoffe beginnen sich zu trennen. Die am niedrigsten siedende Stoff gelangt zuerst auf die analytische Säule. Dann folgen die höhersiedenden. Die Umschaltzeit des 10-Wege-Ventils wird so eingestellt, dass die zu messende Stoffe, die am langsamsten eluieren, noch in die analytische Säule gelangen. Nach dieser Zeit wird der Fluss in der Vorsaule durch Umschalten des 10-Wege-Ventils umgekehrt.
- 4. Die niedriger siedenden Verbindungen werden auf der langen Analysesäule getrennt. Sie werden vom Detektor quantifiziert. Gleichzeitig werden die höhersiedenden Stoffe zurückgespült.

1.5.4 Das Probenahmesystem

Das Probenahmesystem besteht aus einer Anreicherung, durch die das Probengas mittels eines Probenahmezylinders oder einer Pumpe gesaugt wird. Im Falle eines Probenahmezylinders wird eine Bypasspumpe verwendet, um die externen Probenahmeleitungen zu spülen.

1.6 Flussdiagramm Gase

Beachten Sie bitte, dass Bild 5 eine Kombination mehrerer Modelle des GCX55 ist. Die Farben kennzeichnen die Abschnitte, die nur für den Typ gelten, der in der Mitte dieses Abschnitts aufgeführt ist (z. B. <Nur mit PID>). Beachten Sie, dass der "Ofendurchgang" der Durchgang von der Unterseite der Maschine in den Ofen ist. Dies bedeutet nicht, dass sich das Anreicherungsrohr im Ofen befindet, es bedeutet nur, dass es sich auf dieser Seite des Ofendurchgangs befindet.

Bild 5 Flussdiagramm

2. Inbetriebnahme des GCX55

2.1 Sicherheitshinweis

Das Gerät wurde für die halbkontinuierliche Online-Messung von Kohlenwasserstoffen in Luft und anderen Gasen gebaut.

Achtung:

Beim Arbeiten mit dem Gerät sind die folgende Risiken zu beachten:

- Das Instrument darf nur von geschultem Personal verwendet und gewartet werden.
- Eine entsprechende Auswahl der Gase Stickstoff, Helium, Wasserstoff und Luft bei einem Druck von 0,5 bis 5 bar wird an das Gerät angeschlossen. Dieses Gas wird aus Druckgasflaschen bereitgestellt, die Mischungen können explosiv sein, wenn die korrekten Verfahren nicht befolgt werden. Das Personal muss im sicheren Umgang mit diesen Gasen geschult sein. Befestigen Sie Flaschen immer an einer Wand, bevor Sie sie eine Flasche öffnen!
- Das Gerät arbeitet mit einer 230-V- oder 115-V-Wechselstromversorgung. Im Inneren des Gerätes befindet sich eine Hochspannungsversorgung von 2 kV in einem Schutzgehäuse.
- Die Anreicherungseinheit hat während der Desorption eine Temperatur von 100 bis 300 °C. Der Ofen wird auf maximal 180°C aufgeheizt. Die gekühlte Anreicherung kann Temperaturen unter 0°C erreichen.
- Detektoren müssen vor dem Öffnen des Analysators ausgeschaltet warden; einige geben UV-Licht ab.

Das Gerät wurde gemäß der EMV-Richtlinie getestet: EN 55011:2009 (Inklusive Amd 1:2010) EN 61000-3-2: 2014 EN 61000-3-3: 2013 EN 61000-6-2: 2005 Part 6-2 EN 61000-6-3: 2007 Part 6-3 (Inklusive Amd 1:2011) IEC 61326-2014 (EN 61326-1:2013)

2.2 Garantie

Auf das Instrument besteht eine Gewährleistung von einem Jahr ab Lieferung. Die Garantie umfasst keine Filter, Anreicherungsröhrchen und Kapillarsäulen. Für eine PID-Lampe gibt es eine zweijährige Garantie.

- Datenverlust erfolgt auf eigene Gefahr; häufige backups werden empfohlen, nur das physische Laufwerk hat die 2-Jahres-Garantie.
- Untersuchen Sie das Gerät auf Transportschäden. Wenden Sie sich im Schadensfall innerhalb von 8 Tagen nach Erhalt des Instruments an den Lieferanten.
- Lesen Sie Kapitel 2, bevor Sie das Gerät installieren, und Kapitel 3, bevor Sie das Gerät einschalten. Kapitel 3.3 enthält wichtige Anweisungen zu QAQC-Verfahren (Quality Assurance Quality Control).
- Wartung termingerecht durchführen, siehe hierzu Kapitel 4.1.
- Trennen Sie immer die Gas- und Stromversorgung ab, bevor Sie das Gerät öffnen.
- Achten Sie auf elektrostatische Schläge auf den internen Computer und verwenden Sie geeignete Ausrüstung.
- Lassen Sie keine (Metall-)Teile in den GC fallen und lassen Sie den GC selbst nicht fallen.

Bei weiteren Fragen kontaktieren Sie den Lieferanten oder Synspec unter info@synspec.nl oder +31505266454.

2.3 Auspacken

Beim Auspacken empfiehlt es sich, den Inhalt der Lieferung zu überprüfen. Und machen Sie bitte eine kurze Sichtkontrolle.

Einige Mess-anwendungen erfordern 2 verschiedenen GC Systemen. In diesem Fall hat das zweite System über eine RS-232-Schnittstelle Kontakt mit dem Hauptsystem. Der zu verwendende Comport wird in der Datei "GCX55_ID.TXT" angegeben. Beide Systeme besitzen eine eigene eindeutige Seriennummer.

Die Gasanschlüsse auf der Rückseite müssen für den Transport verschlossen warden; daher werden sie von Synspec verschlossen geliefert. Wenn Sie diese Stopfen entfernen, bewahren Sie sie an einem sicheren Ort auf, damit Sie sie später wieder verwenden können, wenn Sie die Maschine wieder transportieren.

2.3.1 Inhalt

Bild 6 Synspec GCX55

Das Paket enthält:

- Ein Mess-system oder bei einem Doppelsystem zwei Mess-systeme sowie in Bild 6.
- Stromkabel.
- Tastatur / Maus.
- UTP-kabel.
- USB stick.
- RS232 Kabel (bei einem Doppelsystem).
- Ein Werkzeugsatz mit den wichtigsten Werkzeugen zum Anschließen der Gasen.
- Dieses Handbuch.
- Alle mit dem Messgeraet bestellten Ersatzteile.

2.3.2 Sichtprüfung

Wenn der Analysator längere Zeit nicht benutzt wurde, sollte der Analysator vor der Inbetriebnahme auf offensichtliche Probleme überprüft werden. Ein Beispiel sind lose Teile im Ofenfach, die dem Ventilator großen Schaden zufügen können, oder lose Teile im Computerfach, die zu Kurzschlüssen führen können. Als Referenz sind Bilder und Diagramme oben aufgeführt, zum Beispiel kann Bild 1 für Informationen über das interne Layout verwendet werden. Instrumentenidentifikation:

- 1. Jedem Analysator liegt ein Prüfbericht mit Seriennummern vieler wesentlicher Teile bei, dieser dient auch als Teil der Gewährleistung.
- 2. Der Prüfbericht identifiziert viele hergestellte Teile im Instrument. Bei umfangreichen Anwendungen erfolgt der Bericht in Form eines FAT; ein Werksprüfbericht.
- 3. Der GC wird mit einer Reihe von Einstellungen geliefert, die in der GCX55_id.txt gespeichert sind. Dies ist die Identifikationsdatei des Analysators.
- 4. Es wird empfohlen, eine Sicherungskopie der ursprünglichen Einstellungen des GC-Verzeichnisses zu erstellen. Synspec fertigt auch eine Kopie aller Original-Testdaten an und diese können bei Verlust in Form einer neuen Festplatte mit dem Original-Setup nachgeliefert werden.
- 5. Die Seriennummer und das Produktionsdatum sind auf dem Seriennummernschild auf der Rückseite des Instruments angegeben.

2.4 Installation

2.4.1 Anforderungen und Informationen

Eine kurze Übersicht über die Anforderungen wird in diesen Kapitel behandelt.

SYNSPEC GCX55 SERIES 601 Benzol ANALYSER mit FID oder PID

Technische Beschreibung	FID- oder PID-Detektor. Niedrigste Nachweisgrenze für Benzol 0,1 ppbV. Bereich: Standard 0-20 ppbV, mit Softwareanpassungen bis 300 ppbV möglich.
Zertificate	In Bearbeitung
Standard Kalibrierung	Standardmäßige 4-Punkt-Kalibrierung für BTEX im Bereich von 4 bis 16 ppbV.
Zusaetzliche Stoffe erhaeltlich	Die Software des Analysators ist für die Messung von BTEX vorbereitet, kann aber insgesamt bis zu 40 Kohlenwasserstoffe messen. Geben Sie die Kohlenwasserstoffe an, die für die Zugabe wichtig sind. Bei Synspec wird die Liste hinsichtlich der Möglichkeiten der vorhandenen Hardware geprüft. Wenden Sie sich bitte an Synspec, um Ratschläge zu Kalibriergas- und Peakfenstereinstellungen zu erhalten.
Reproduzierbarkeit	Typisch <3 % bei 1 ppbV (Benzol, mit Kapillarsäule), temperierter Raum
Gas verbrauch	Stickstoff: Qualität 5.0; 4 bis 5 bar; etwa. 15 ml/min fuer PID und 50ml/min fuer FID. Wasserstoff: Qualität 5.0; 4 bis 5 bar; 25 ml/min Null-luft: Qualität 5.0; 4 bis 5 bar; 250 ml/min + 50ml/min fuer Nullpunkt-kallibrierung
Maße	19-Zoll-Rack, 5 Standardhöheneinheiten (224 mm), Breite 430 cm, Frontplatte 483 mm, Tiefe 552 mm. Gewicht ist 19,5 kg für den PID und 20 kg für den FID-Analysator.
Hardware	Interner industrieller x86 Computer, zum Messen und Speichern von Daten bis zu 10 Jahren. Festplatte, Vollfarb-Touchscreen, verschiedene Datenverbindungsmöglichkeiten.
Kommunikation	Direkte Steuerung über Touchscreen, Tastatur oder Maus. Externe Datenkommunikation über RS232, analoge und digitale Ausgänge über TCP-IP. Verfügbare Standardprotokolle: ASCII-Terminal, HessenBayern, Gesytec und MODBUS; andere Protokolle auf Anfrage.
Enthaltene Software	Win10 embedded und GCX55 Software. Steuerung über Touchscreen, Tastatur oder Maus über Remote-Host (RS232/Modem) oder Ethernet. Software zum Ausführen des Analysators, Datenauswertung und -aufbereitung ist auf dem Desktop enthalten.
Energie Nachfrage	230VAC 50-60Hz, 500VA beim Start für ca. 1 Minute und danach 300 VA. GCX55 mit 115VAC Stromversorgung ist auf Anfrage erhältlich)

2.4.2 Platzierung des Analysators

Es wird empfohlen, das Instrument unten und oben mit einem Belüftungsraum von 1 Standardhöheneinheit zu versehen, und es wird empfohlen, es auf einer Schiene zu montieren. Wenn der GC auf einer Metall- oder Holzplatte aufgestellt wird, achten Sie bitte auf eine Belüftung des Bodens, entweder durch ein belüftetes Gehäuse oder durch eine Lochplatte.

Vergessen Sie nicht, einen Platz für Tastatur und Maus zu reservieren, vorzugsweise ein Board auf Folien, das 10 bis 50 cm unterhalb des GC platziert werden kann.

Für Standardanwendungen wird davon abgeraten, eine Raumtemperaturregelung zu verwenden, die zu Temperaturänderungen von mehr als 5 °C pro Stunde führt. Stabile Verweilzeiten werden am besten erreicht, wenn die Raumtemperatur stabil ist, stellen Sie das Gerät also nicht in den direkten Luftstrom der Klimaanlage.

2.4.3 Gasanschlüsse

Das mitgelieferte Edelstahl-T-Stück für den Probenschlauch wird mit 2 Anschlüssen am GC verbunden, und platzieren Sie den Probenfilter im letzten Schlauchstück vor dem Proben-T-Stück.

Gasdruckregler und Anschlüsse

- Alle Armaturen des Instruments müssen 1/8-Zoll-Swagelok-kompatibel und aus Edelstahl sein
- Druckminderer müssen gaschromatographische Qualität haben, d.h. müssen staubfrei sein und dürfen keine Kohlenwasserstoffe aufnehmen oder abgeben. Da Regler und Flaschenanschlüsse nicht genormt sind, lassen Sie sich am besten von einem guten und zuverlässigen Gaslieferanten vor Ort beraten
- Achtung: Der Druckabfall über dem internen Druckminderer sollte mindestens 0,5 bar betragen. Die unten empfohlenen Werte basieren auf diesem Offset
- Alle Druckmesswerte sind in Standardatmosphäre [atm] angegeben, was etwa ~1bar entspricht
- Für das Trägergas Stickstoff bedeutet gaschromatographische Qualität: Verwenden Sie einen Zweistufenregler aus vernickelter Bronze mit Stahlmembran, Bereich 0 bis 4 oder 0 bis 10 bar. Verwenden Sie Flaschen mit einem maximalen Druck von 200 bar
- Für Kalibriergase wird ein Edelstahlregler mit hochwertiger Stahlmembran bevorzugt
- Beim Austausch von Gasflaschen: Druck von 8 bar+ auf dem Analysator wird interne Teile beschädigen

2.4.4 Kalibrier- und Validierungsgas

Der Synspec GCX55 kann zur einfachen Kalibrierung mit einer internen Switchbox ausgestattet werden. Das System kann aber auch mit externen (manuellen) Schaltsystemen kalibriert werden.

Das Gerät kann Drücke außerhalb des angegebenen Kalibriergasdrucks nicht richtig kompensieren. Stellen Sie sicher, dass unverdünnte Flaschen auf den gewünschten Fluss beschränkt sind, hierfür kann eine Beschränkung verwendet werden. Synspec stellt diese auf Anfrage ebenfalls zur Verfügung. In diesem Fall sollten Sie es auch mit einem Überlauf kombinieren, damit sich kein Druck zu stark über dem Umgebungsdruck aufbaut.

2.4.5 Probenkonditionierung

Die Probe muss filtriert werden, da der Innendurchmesser des Innenschlauchs meist 0,5 bis 1,0 mm beträgt. Dazu wird eine Teflon-Filtermembran von 2 oder 5 Mikron empfohlen, vorzugsweise in einem 1/8-Zoll-Gehäuse, aber alternativ in einem 6-mm- oder 1/4-Zoll-Gehäuse mit guten Verbindungen zum 1/8-Zoll-Schlauch. Als Filter können auch Einweg-Nylonfilter mit Glasfritte oder Teflonfilter verwendet werden.

Auch bei kurzen Verbindungsstücken nur PTFE (Teflon), FEP oder Edelstahl verwenden. Verwenden Sie keine anderen Kunststoffe oder Bronze.

Verwenden Sie unterschiedliche Schläuche zur Entnahme von Umgebungsluftproben und Kalibrierproben. Verwenden Sie zwei Schlauchsysteme, die nur die letzten 5-15 cm vor der Probenahmeöffnung verbunden sind. Dies soll Geisterbilder und Kreuzkontaminationen reduzieren. Die Probenleitung kann an zentrale Probenahmesysteme mit einer großen Volumenpumpe angeschlossen werden.

Bild 7 Allgemeines Anschlussschema

2.5 Die ersten Messungen

2.5.1 Einschalten

Das Instrument kann eingeschaltet werden, sobald alle Verbindungen hergestellt und alle Platten installiert sind. Hier ist eine kurze Checkliste:

- Sind alle Gasanschlüsse hergestellt?
- Sind alle Gasanschlüsse auf dem richtigen Druck und ausreichend?
- Werden die Gasanschlüsse auf Dichtheit geprüft??
- Sind die elektrischen Anschlüsse hergestellt?

Die Nichtbeachtung dieser Punkte kann dazu führen, dass die Maschine nicht richtig funktioniert.

2.5.2 Starten des Programms

Nach dem Start befindet sich das Programm standardmäßig auf "Rundata", wie in Bild 11 gezeigt. Es startet entweder automatisch (wenn diese Einstellung gesetzt ist) oder es wartet auf einen manuellen Start, um den Lauf zu starten. Wenn dies der erste tatsächliche Durchlauf ist, wird das Hintergrund-Nullabgleichsignal gesetzt, wonach das Programm startet. Die Detektoren benötigen möglicherweise einige Zeit, um sich zu stabilisieren, daher kann das erste Zurücksetzen eine Minute dauern. Im Automatikmodus startet er entweder sofort oder sobald die Synchronisation erreicht ist. Dieser Bildschirm zeigt dann das aktuelle Gaschromatogramm live an.

2.5.3 Der erste Lauf

Standardmäßig startet die GC-Software nach dem Hochfahren, aber es gibt auch eine Verknüpfung zu dieser Anwendung auf dem Desktop. Beim Applikationsstart wird ein Selbsttest der Elektronik durchgeführt und der Ofen auf die eingestellte Applikationsgrundtemperatur aufgeheizt. Erst wenn alle Prüfungen erfolgreich sind, wird das Programm fortgesetzt; siehe Bild 8.

S GCX55; Actual run	X
<u>F</u> ile <u>O</u> ptions <u>L</u> anguage <u>H</u> elp	⊻ Tabs
🍘 Rundata 🔲 Filedata 🛶 Program Edit 🔀 Calibra	tion 🗹 Graphs 🔟 Autolinearisation 🛃 I/O-state
10000 - 9000 - 8000 -	1 ×1 2 ×10 4 ×100 8 ×1000
6000 - 5000 -	Update
4000 - 3000 -	
2000 ⁻ 1000 ⁻	
0 -	
	11 12 13 14 15 16 17 18 19 20
Enabling PID 0'00"	<u>10 20 30 100% 100% 50% 25% 10%</u>
	Start Run ssure 0.0Bar Ambient 0.0°C STOP RUN
GCX55 Sample Press 0	Flow 0.0ccm PreconTem 0°C ABORT RUN

Bild 8 Der FileData-Modus

Wie in Bild 8 gezeigt, enthält das Programm sieben verschiedene Modi, die durch Registerkarten getrennt sind:

- 1. **Rundata** ist die aktuelle Messung und zeigt die gemessenen Werte (Dies sind auch die Werte im unteren Teil des Bildschirms)
- 2. Filedata ist der Ort, an dem alle gemessenen Chromatogramme abgerufen werden können
- 3. Programm bearbeiten ermöglicht das Ändern der Laufprogrammeinstellungen
- 4. Kalibrierung enthält die Werkzeuge zum Kalibrieren
- 5. **Diagramme** werden für einen schnellen Überblick über die gemessenen Verbindungen verwendet
- 6. **Die Autolinearisierung** kann für eine Mehrpunktkalibrierung verwendet werden.
- 7. **I/O-State** zeigt den aktuellen Funktionszustand des Instruments an.

Der untere Teil des Bildschirms zeigt immer Daten über die aktuelle Messung an, dazu gehören unter anderem Datum und Uhrzeit der Uhr, der aktuell gemessene Rohwert des/der Detektoren, Umgebungs- und Ofen- und Pre -Konzentrationsrohrtemperatur.

Bei einigen Spalten wird während des Systemstarts die Meldung SOFTFLOWSTART auf dem Bildschirm angezeigt, dies ist nur informativ.

FID: Beim Start wird das Wasserstoffventil geöffnet. Bei neu angeschlossenen Leitungen sind die Leitungen mit Luft gefüllt. Die Zufuhr von Wasserstoff begrenzt die Verbrennung, und das Gerät startet nicht im ersten Durchgang. Wenn 10 Sekunden lang keine Flamme erkannt wird, wird aus Sicherheitsgründen der Wasserstoff abgeschaltet, die Flamme wird mit Temperatur von einem Thermoelement erkannt. Dieser Fehlerverlauf kann sich 5 Mal wiederholen, danach wird eine Fehlermeldung angezeigt, dies erfordert einen manuellen Neustart, damit das Programm es erneut versuchen kann. (Nach dem Transport kann es vorkommen, dass dieser Vorgang einige Male wiederholt werden muss, um die Schläuche zu spülen, aber in der Regel beginnt er schnell). Die Verbrennung kann auch manuell überprüft werden, indem ein Glas oder Spiegel an den Auspuff gehalten und auf Tropfen geprüft wird.

Wenn das Gerät so eingestellt ist, dass es nach einem Stromausfall automatisch startet und der Wasserstoffgenerator nicht schnell genug ist, um wieder Druck aufzubauen, kann es zu einem Fehler der Maschine kommen. In diesem Fall wird empfohlen, die Wartezeit zum Starten der Maschine zu verlängern.

Ein Neustart kann erst nach Erlöschen der Flamme erfolgen, das Thermoelement muss einen Temperaturanstieg erkennen können.

Wenn die Wasserstoff- oder Luftzufuhr während des Laufs unterbrochen wird, schließt das Wasserstoff-Sicherheitsventil, und obwohl das Programm weiterläuft, ergibt sich eine flache Grundlinie. Es ist erforderlich, den FID neu zu starten, indem Sie im aktuellen Lauf auf "Optionen – FID neu starten" klicken.

Sollte die Wasserstoffversorgung nicht optimal sein, kann die Anzahl der Retrys in der GCX55id.txt mit der Zeile "FIDRETRYMAX=nn" auf einen Wert von maximal 15 geändert werden.

2.5.4 Datendatei

Unter "Dateidaten: Datei - Datendatei laden" können Messungen abgerufen werden. Das Standardformat, in dem die Software diese Dateien schreibt, ist

../D_YYMM/D_YYMMDD/M_DDHHMM.BIN" (z. B. "/D_2211/D_221130/M_300945.BIN" für 09:45:00 am 30. November 2022). Die X- und Y-Achsenskala wird mit "Rundata" geteilt, um den Vergleich zu vereinfachen. Siehe bitte Bild 9.

GCX55; Filedata —		×		
<u>F</u> ile <u>O</u> ptions <u>A</u> nimate data <u>L</u> anguage <u>H</u> elp	~	/ Tabs		
🛞 Rundata 📑 Filedata 🔌 Program Edit 🔟 Calibration 🗹 Graphs 🔟 Autolinearisation	€ I/O-	state		
10000 Height: 11254 90402.area: 1594025 0-xylene 21,51 ug/m3 Width: 2.4 sec. 0-xylene 21,51 ug/m3 Width: 3.4 sec. 0 10000 Int.area: 10101215 Width: 7.2 sec. 000 10000 M.P-xylene 23.19 ug/m3 4000 M.P-xylene 23.19 ug/m3 4000 Height: 18075 3000 Int.area: 511058 Width: 5.4 sec. 101215 Width: 7.2 sec. 5000 M.P-xylene 23.19 ug/m3	1 2 2 x 4 x 8 x1	>>) x1 10 100 1000		
σγ				
	19 3	20		
8 Min. 14 Sec. 0'00" 10 20 30 100% 100% 50% 25% 10%				
SYNSPEC 1977-09-11 06:11:19 START RUN PID 0 Pressure 0.0Bar OvenTemp 0.0°C Smp Cnt 0 Pressure 0.0Bar Ambient 0.0°C				
VValting for real-time sync Sample Press 0 Flow 0.0ccm PreconTem 0°C	ABORT	RUN		

Bild 9 Registerkarte "Dateidaten"

2.5.5 Stoppen des Programms

Es gibt drei Möglichkeiten, das Programm zu stoppen. Unabhängig davon, wie das Programm gestoppt wird, setzt die Maschine alle eingestellten Parameter auf die für einen Neustart erforderliche Position zurück. Dies geschieht auch bei Stromausfall.

- Der richtige Weg ist, auf die Schaltfläche: "STOP RUN" zu klicken, dann stoppt das Programm am Ende des aktuellen Laufs und dieser Lauf wird noch normal gespeichert. Danach kann ein neuer Lauf erneut gestartet werden, nachdem die optional erforderlichen Änderungen vorgenommen wurden. Oder das Gerät kann komplett heruntergefahren werden.
- 2. Wenn es erforderlich ist, die Software im Notfall zu unterbrechen, kann die Schaltfläche "ABORT RUN" verwendet werden. Das Programm stoppt sofort und die Windows-Anwendung kann ausgeschaltet werden. Aber seien Sie gewarnt, dass der nächste Lauf durch Rückstände des abgebrochenen Laufs kontaminiert sein könnte.
- 3. Der letzte Weg ist nur für (Hardware-)Notfälle: Strom ausschalten. Der letzte Lauf wird nicht gespeichert und diese Art des Stoppens des GC wird nicht empfohlen, da die Software keine Möglichkeit hat, die aktuellen Daten zu speichern.

2.5.6 Abschalten der Anlage :

Wenn das Analysegerät für längere Zeit gelagert wird, gibt es einige Optionen:

- Es weiterlaufen zu lassen, ohne etwas mit den Ergebnissen zu tun: Dadurch kann es in wenigen Minuten wieder gestartet werden, das einzige Problem ist, dass es Strom und Benzin verbraucht.
- Stoppen Sie den Lauf und lassen Sie ihn für einen Neustart bereit: Dies ist im Allgemeinen besser. Es gibt weniger Verbrauch von Gas und Strom, aber immer noch einen ordentlichen schnellen Neustart.
- Vollständiges Ausschalten: Achten Sie in diesem Fall darauf, dass kein Staub oder Feuchtigkeit eindringt.

2.6 Zeit erforderlich, um den GCX55 für BTEX einzurichten und aufzuwärmen

Die Zeit für eine grundlegende Einrichtung des GCX55 beträgt etwa 1 Stunde. Dazu gehört die Platzierung des GC in einem 19-Zoll-Rack, das Anschließen der Schläuche und die elektrischen Bekabelung.

Bevor Sie eine Linearisierung oder Kalibrierung durchführen, lassen Sie den GCX55-PID drei Tage lang stabilisieren, um die gesamte Feuchtigkeit aus der Säule und dem PID zu entfernen. Dies ist erforderlich, da der PID sehr feuchtigkeitsempfindlich ist. Der FID braucht nur eine halbe Stunde aufzuwärmen, da der FID weitaus unempfindlicher gegenüber Feuchtigkeit ist.

Die Zeit zur Durchführung einer Linearisierung (nur PID) ist automatisiert, dauert jedoch etwa 10 Stunden. Die Linearisierung muss nach dem Austausch der N2-Flasche und nach der Wartung und/oder dem Austausch des PID durchgeführt werden.

Die manuelle Kalibrierung des GCX55 dauert etwa 4,5 Stunden für 5 Konzentrationspunkte. Jeder Konzentrationspunkt wird dreimal gemessen. Jeder BTEX-Lauf dauert 15 Minuten. Wenn nur eine Spangaskonzentration verfügbar ist, kann der GC automatisch kalibriert werden, indem mehr oder weniger Probenzylinderschritte verwendet werden.

3. Arbeiten mit dem GCX55

3.1 Kontinuierliche Messungen

Ein gut eingestelltes Instrument läuft zwei bis vier Wochen ohne Aufmerksamkeit. Natürlich muss die Gasversorgung ausreichend sein und Kalibrierungen sollten nach Qualitätsstandard durchgeführt werden, und es wird empfohlen, das Programm auf automatischen Neustart nach Stromausfall einzustellen.

3.1.1 Retentionszeit und Peakfenster

Die berechnete Retentionszeit kann in "Dateidaten: Optionen – Bildschirmelemente auswählen" aktiviert werden, sowie in Bild 10 angezeigt wird. Die genaue Retentionszeit hängt von vielen Faktoren wie Temperatur, Säulentyp, Flussrate usw. ab. Dies wurde vorab festgelegt und eingestellt von Synspec, und wenn sich diese Faktoren nicht drastisch ändern, ändert sich auch nicht viel an den Retentionszeiten. Es wird erwartet, dass sich die Retentionszeiten minimal verschieben.

Bild 10 Variationen der Aufbewahrungszeit und das Fenster Dateidaten: Optionen - Bildschirmelemente auswählen

Eigenschaften der Retentionszeitfenster müssen sorgfältig in "Filedata: Options – Edit peakwindows" eingestellt werden, wie in Bild 11 gezeigt, einige Anmerkungen dazu enthalten:

- Sie sollten nicht zu breit sein, um Störungen durch andere Komponenten zu vermeiden. Sie können jedoch schmaler sein als der tatsächliche Peak, da das Programm den Beginn und das Ende der Peaks berechnet
- Für kleine Verschiebungen in der Retentionszeit sollten einige Sekunden extra eingeplant werden
- Sie sollten nicht nur auf dem Erstlauf basieren; Die Maschine hätte nicht die Zeit gehabt, sich zu stabilisieren.
- Begrenzen Sie die Veränderung externer Faktoren; verunreinigte Probe, starke Temperaturund/oder Feuchtigkeitsschwankungen führen zu einer Verschiebung der Retentionszeit

Peak window editor					
	Substance		From	To (sec.)	integration
1 B	Benzene	•	187	208	attributes
2 T	oluene	•	296	321	attributes
3 E	thylbenzene	•	489	517	attributes
4 N	I,P-xylene	•	519	553	attributes
5 0)-xylene	•	593	629	attributes
6 N	lone	•	0	0	attributes
7 N	lone	•	0	0	attributes
8 N	lone	•	0	0	attributes
9 N	lone	•	0	0	attributes
10 N	lone	•	0	0	attributes
✓ <u>OK</u> X Cancel ⊘ <u>H</u> elp 110 1120 2130 3140					

3.1.2 Temperaturdiagramm

Das Ofentemperaturdiagramm kann in "Dateidaten: Optionen – Diagramme zum Anzeigen auswählen" aktiviert werden, wie in Bild 12 gezeigt. Die Registerkarte "Dateidaten" zeigt dann diese Werte an, in diesem Fall ist "Solltemperatur" schwarz und "gemessene Temperatur" schwarz rot, beachten Sie, dass es einen Versatz in der angezeigten Grundlinie gibt. Wenn diese nicht gleich aussehen und/oder nicht stabil sind, warten Sie auf einen weiteren Lauf, bis dies der Fall ist.

Bild 12 Das Ofentemperaturdiagramm und das Fenster Dateidaten: Optionen – Diagramme zur Ansicht auswählen

3.1.3 Synchronisation von Messungen

Run settings					
 Restart at discrete time, every 15 minutes C Restart immediately after end of RUN 					
Automatic RUN start after software start					
Overwite old datafiles if harddisk is (almost) full					
☐ Generate raw ASCII datafiles					
Delay validation for 1					
✓ <u>O</u> K X Cancel Ø <u>H</u> elp					

Es ist entweder möglich, die Messungen zeitlich zu synchronisieren, oder sie laufen weiter und nehmen so viele wie möglich auf. In "Program Edit: Settings - Run settings", siehe Bild 13, kann dieses Verhalten ausgewählt werden.

- Im ersten Fall wartet das Gerät mit dem Start der nächsten Messung, bis die Computeruhr die richtige Minute erreicht. Wenn eine Synchronisation von 10 Minuten verwendet wird, stellen Sie sicher, dass die Zykluszeit unter 10 Minuten eingestellt ist (mindestens 15 Sekunden kürzer). Dies soll eine Datenspeicherung und Nulleinstellung ermöglichen, bevor der nächste Zyklus beginnt.
- 2. Im zweiten Fall startet die Maschine immer sofort, wenn der Lauf beendet und bereit ist.

Es wird empfohlen, den "automatischen Neustart" zu verwenden, wenn ein Stromausfall auftritt, dies würde den Startvorgang weiter automatisieren und sicherstellen, dass keine Messgelegenheit verloren geht.

3.2 Qualitätssicherung und Qualitätskontrolle

3.2.1 Qualitätskontrolle

Qualitätssicherung und Qualitätskontrolle von Systemen ist ein vierstufiges Verfahren:

- 1. Qualitätskontrolle der Produktion
- 2. Standardwartung
- 3. Technische Qualitätskontrolle
- 4. Qualitätssicherung der Messung

Bei Synspec werden die Analysatoren nach einem Standardtestprotokoll getestet. Die Ergebnisse der Tests werden in der Kopie des Original-Testblatts bereitgestellt, die Kalibrierungslinie wird ausgedruckt. Für alle Analysatoren wird ein Werksabnahmebericht (FAT) erstellt.

In Kapitel 4.1 gibt es eine für die Wartung bewährte Liste, es wird empfohlen, diese für eine optimale Leistung zu befolgen. Synspec bietet hierfür Standard-Wartungspakete an. Um weiterhin eine optimale Leistung zu gewährleisten, sollten die folgenden Punkte beachtet und

beachtet werden:

- Achten Sie auf Alarmmeldungen (auf dem Bildschirm)
- Untersuchen Sie die Basislinie und die Peakform visuell
- Stabilität und korrekte Änderung von Durchfluss und Druck
- Überprüfung der aufgezeichneten Daten; Basislinie, Peakform, Temperaturkontrolle und Probenkontrolle, wie in Bild 14 gezeigt wird.

Bild 14 Prüfung der 4 Hauptelemente der Programmqualitätsprüfung: Grundlinie, Peakform, Temperaturkontrolle, Probennahmekontrolle

3.2.2 Qualitätssicherung

Für eine ordnungsgemäße Qualitätssicherung ist eine regelmäßige Überprüfung der generierten Daten erforderlich. Prüfen Sie zunächst die Ergebnisse des Datenloggers auf Stabilität der Retentionszeit. Danach kann das Muster der Messungen überprüft werden. Sind beide wie erwartet, können die einzelnen Chromatogramme eingesehen werden. In Kapitel 4.1 ist eine Liste bereitgestellt, die die Häufigkeit von Validierungen, Backups und dergleichen angibt. Es wird empfohlen, diese für die optionale Qualität zu befolgen.

3.2.3 Standard Operating Procedure (SOP)

Um eine standardisierte Arbeitsweise zu erreichen, ist ein einheitliches Betriebsverfahrenshandbuch erforderlich. Jede Organisation muss ihre eigene SOP erstellen, die an das Ziel der Messungen, die genaue Konfiguration des Analysators, die Kalibrierausrüstung, die Datenübertragung und die Berichtsmethode angepasst ist.

3.3 Validierung und Kalibrierung

Eine automatisierte und periodische Validierung der Kalibrierung kann in "Runddaten: Optionen -Autovalidierung aktivieren" umgeschaltet werden. Die Daten werden dann statt zusammen mit den normalen Messungen im Validierungsverzeichnis gespeichert.

3.3.1 Das Prinzip der Kalibrierung

Bild 15 Kalibrierlinie für eine Einpunkt- und eine Mehrpunktkalibrierung

Durch eine Kalibrierung wird aus den Flächenwerten der Umrechnungsfaktor für die automatische Konzentrationsberechnung ermittelt. Darüber hinaus wird es auch verwendet, um zu überprüfen, ob die Maschine richtig funktioniert. Es wird eine Validierung durchgeführt, um festzustellen, ob die Kalibrierung noch innerhalb der festgelegten Grenzen für die QAQC-Anforderungen liegt. Die Häufigkeit dieser Verfahren, die Anzahl der ermittelten Punkte und die Anzahl der Wiederholungen pro Punkt hängen von Ihrem Qualitätskontrollschema ab. Siehe bitte Bild 15.

3.3.2 Messen von Kalibriermischungen

Für eine optimale Kalibrierung sollten die Peakfenster bereits richtig eingestellt sein, wie in Kapitel 3.1.1 beschrieben.

Um die Kalibrierung zu starten, geben Sie das Kalibriergas an die Maschine, mit einer Switchbox wäre dies ein automatisierter Prozess. Um die Kalibrierung zu speichern und zu verwenden, wählen

Sie unter "Runddaten: Optionen – Kalibrierungsmodus einstellen" aus, was mit den Daten geschehen soll. Es gibt 3 Optionen, wie in Bild 16 gezeigt.

- **Start new:** Macht alle alten Kalibrierdaten ungültig und die aktuelle Kalibrierung ist nicht mehr aktiv
- Add data: Dies kann verwendet werden, um eine weitere Verbindung, Konzentration oder einen Validierungspunkt hinzuzufügen.
- Normal data: Dies ist der Standard-Analysatormodus (keine Kalibrierung)

Set calibrationmode				
Calibration				
C Start new calibration				
C Add data to current calibration				
• Normal data mode (no calibration)				
✓ <u>O</u> K X Cancel Ø Help				

Bild 16 Das Fenster Rundata: Optionen - Kalibriermodus einstellen

Während des Laufs sollten die Konzentrationswerte der Kalibriermischung in der Software eingestellt werden, dies erfolgt in "Rundata: Optionen – Probenkonzentrationen bearbeiten", wie in Bild 17 gezeigt. Die Konzentrationsmenge wird gespeichert und muss nur angepasst werden, wenn die Kalibriergaskonzentration geändert wird. Waehlen Sie "USE Yes" zu der Stoffe die Kalibriert werden muss.

Beachten Sie, dass dieses Fenster nur im Kalibrierungsmodus zugänglich ist, und zur einfacheren Verwendung ermöglicht dieses Fenster auch die Einstellung des Einheitentyps, der auch die Einheit ist, in der die Werte nach der Kalibrierung angezeigt werden.

Wenn die Kalibrierung abgeschlossen ist, sollte der Kalibrierungsmodus wieder auf normal geändert werden, wie in Bild 19 gezeigt, und die Zustände der optionalen Schläuche oder Ventile sollten wiederhergestellt werden, wenn dies nicht automatisch erfolgt.

Edit sample concentrations					
Component	USE Yes No	Concentr.	Units		
1. Benzene	00	0.0	ug/m3 🔻		
2. Toluene	00	0.0	ug/m3 🔻		
3. Ethylbenzene	00	0.0	ug/m3 🔻		
4. M,P-xylene	00	0.0	ug/m3 🔻		
5. O-xylene	\circ	0.0	ug/m3 🔻		
6.	00	0.0	µg/M³ ▼		
7.	\odot	0.0	v-ppb 🔻		
8.	00	0.0	mg/M³ ▼		
9.	\odot	0.0	vol-% 🔻		
10.	\odot	0.0	gr/M³ ▼		
Select components > 110 1120 2130 3140					
✓ <u>O</u> K X Cancel	<u> </u>	Load de	efaults		

Bild 17 Das Fenster Rundata: Optionen - Probenkonzentrationen bearbeiten

3.3.3 Berechnung des Umrechnungsfaktors

Die gemessenen Kalibrierwerte werden verwendet, um die Kalibrierlinie zu erstellen. Der Korrelationskoeffizient der Linie wird berechnet, um die Linearität anzuzeigen, wie in Bild 18 gezeigt.

Bild 18 Kalibrierungsfenster

Das Ändern der angezeigten Komponente kann in "Kalibrierung: Optionen – Datenauswahl Kalibrierungsdateien" vorgenommen werden, wie in Bild 19 gezeigt.

Dieses Fenster ermöglicht auch das Hinzufügen oder Entfernen bestimmter Dateien, wenn dies gewünscht wird, obwohl dies niemals nur zur Verbesserung des Korrelationskoeffizienten getan werden sollte, stellen Sie sicher, dass es gute Gründe gibt, bevor Sie diese Maßnahmen ergreifen.

Component:	Benz	ene	
Datafile:	M_191345.BIN		
Add File		Remove file	
Concentration 50.000000		Units	
		ua/m3 ×	

Bild 19 Das Fenster Kalibrierung: Optionen – Datenauswahl Kalibrierungsdatein

Wenn Konzentrationswerte vergessen oder falsch eingegeben wurden, können Sie dies korrigieren, indem Sie in den Datendateimodus gehen, das Chromatogramm laden und die Konzentration unter Optionen\Probenkonzentrationen bearbeiten korrigieren. Nach dem Schließen von geänderten Dateien werden Sie aufgefordert, die Änderungen zu bestätigen.

Sie können Dateien aus dem Berechnungssatz entfernen, aber natürlich nicht, um einen höheren "Korrelationskoeffizienten" zu erreichen, sondern nur, weil es plausible Gründe gibt, diese Messungen für die Kalibrierkurve abzulehnen.

Aus den Messwerten in mV werden die Konzentrationen in ppb oder µg/m³ berechnet.

Unter Kalibrierung\Optionen\Einstellungen kann die Einheit eingestellt werden, in der die Konzentration berechnet wird. Die Standardeinheit ist diejenige, die bei der Eingabe der Kalibrierkonzentrationen verwendet wird, optional kann aber auch eine andere verwendet werden: Aus den Messwerten in mV können die Konzentrationen in ppb oder µg/m³ berechnet werden. Einstellungen für die Kalibrierung: Wählen Sie die Einheit, in der die Daten gespeichert werden sollen. Siehe bitte Bild 20.

Die Berechnung der Kalibriergerade kann auf drei Arten erfolgen. Für den normalen Gebrauch ist die lineare Regression mit festem Basispunkt am besten geeignet, sowie in Bild 21 gezeigt wird. Nachdem diese Berechnung durchgeführt wurde, wird diese Kalibrierung verwendet, um Konzentrationen aus gemessenen Rohdaten zu berechnen, bis eine neue Kalibrierung gestartet wird.

Die Berechnung des Umrechnungsfaktors

1. Wiederholen Sie alle obigen Schritte für jede Stoff.

ettings for calibration							
Use the following unit for calculation :							
Cµg/M³ ⊙ug/m	3 C mg/M³ C v-ppm	⊖ vol-% ⊖ gr/M³					
Standard pressure (mBar)							
Standard temperature (°Celsius) 20							
Correction of sar	nplevolume :						
Normal press	ure (mBar)	1013					
Normal tempe	erature (°Celsius)	20					
	. ,						
✓ Show R2 factor ✓ OK X Cancel							
ild 20 Das Fens	ter Kalibrierung: Opt	ionen - Einstellungen					
alculate calibrationli	ne						
Calculate baseline using :							
C Linear regression							
O Non linear reg	gression						
V OK	X Cancel 🛛 🔹	Help					

Bild 21 Das Fenster Kalibrierung: Optionen - Kalibrierungslinie berechnen

3.3.4 Validierung

Das Qualitätskontrollsystem erfordert häufig eine regelmäßige Validierungsprüfung. Dazu wird empfohlen, die Dauer der Kalibrierungsprobe auf maximal eine halbe Stunde einzustellen. Wenn die Option Daten zur aktuellen Kalibrierung hinzufügen (unter aktueller Lauf\Optionen\Kalibrierungsmodus einstellen) ausgewählt ist, werden diese Werte auf der Kalibrierungslinie gezeichnet. Die Kalibrierung selbst ändert sich nicht, es sei denn, Sie berechnen den Umrechnungsfaktor neu.

3.3.5 Kalibrierungsübersicht

Aktion	Dialog zu verwenden	Notiz
Kalibrierungsstart		Starten Sie das Verdünnungssystem und verbinden Sie das Kalibriergas mit dem GC
Peakfenster prüfen	Dateidaten: Optionen -	
	Peakfenster bearbeiten	
Nehmen Sie die erste Kalibrierprobe	Rundata	
Erster Kalibrierlauf	Rundata: Optionen - Kalibriermodus einstellen	
Konzentrationen notieren	Rundata: Optionen - Probenkonzentrationen bearbeiten	Falls Konzentrationen noch nicht bekannt sind, Kurvenberechnung abwarten
Wiederholen Sie die beiden vorherigen Schritte		Konzentrationsdaten werden in die nächste Datei kopiert, wenn sie nicht geändert werden
Ende der Kalibrierung	Rundata: Optionen - Kalibriermodus einstellen	Schließen Sie die Probenahme der Umgebungsluft während des letzten Kalibrierungslaufs wieder an und stellen Sie den Kalibrierungsmodus nach dem letzten Lauf wieder auf den normalen Datenmodus ein
Läufe für die	Kalibrierung: Optionen -	Überprüfen Sie die Konzentrationen und entfernen Sie
Kalibrierungskurve auswählen	Datenauswahl Kalibrierungsdateien	optional beschädigte/schlechte Läufe
Kurve berechnen		Überprüfen Sie die Linie auf Linearität und Korrelation
Kalibrierfaktor aktiv		Nach Übernahme der Kalibrierkurve wird diese bis zur
setzen		nächsten Kalibrierung verwendet.

3.4 Datenregistrierung und Datenverarbeitung

Dieses Kapitel beschreibt die allgemeine Idee der Daten und ihres Formats, aufgrund der enormen Komplexität, wenn es nicht möglich ist, jeden Randfall und alle Benutzervariablen in diesem Kapitel zu erklären. Beispielsweise könnten die Laufzeitmessdaten einen eigenen Unterordner "Rundata/" haben, anstatt wie unten beschrieben im Hauptordner gespeichert zu werden. Bitte betrachten Sie dieses Kapitel als einfache Anleitung und nicht als Regelbuch.

3.4.1 Datenregistrierung

Die Datenstruktur der generierten Dateien, basierend auf dem Stammverzeichnis der Software, ist wie folgt:

Unterverzeichnisse		Dateiname	Wofür es verwendet wird
D_YYMM/	D_YYMMDD/	M_DDHHSS.BIN	In Ordnern gespeicherte Messungen pro Jahr, pro Monat, pro Tag (täglich)
Calibdat/	C_YYMMDD/	C_DDHHSS.BIN	Kalibrierungen (täglich)
Validate/	V_YYMM/	V_DDHHSS.BIN	Validierungen (monatlich)
Lindata/	L_YYMMDD/	L_DDHHSS.BIN	Autolinearisierungen
		RDYYMM.txt	Rundata-Datei mit Ergebnissen (monatlich)

Placeholder	Definition
YY	Die letzten 2 Ziffern des Jahres, 0-99
MM	Monat des Jahres, 1-12
DD	Tag des Monats, 1-31
НН	Stunde des Tages, 0-23 Uhr
MM	Minuten, 0-59min
SS	Sekunden, 0-59s

Die Rundata-Textdatei sieht wie folgt aus:

/Codes: ·C·=·Ca	librationdata•	$\cdots \cdots N \cdot = \cdot Normal$	data····V	•=•Validationdata•	·····B·=·BaddataCRL	
$/Code \longrightarrow \cdot Date -$	\rightarrow · Time \rightarrow · Cha	$nnel \cdot nr \cdot : \longrightarrow \cdot Co$	nc-Benzene-	\rightarrow Area-Benzene \longrightarrow	Reti-Benzene \longrightarrow Cond	c-Tolue
$S \longrightarrow 01 - 02 - 21 - 02 - 02$	$\rightarrow \cdot 00: 00 \rightarrow \cdot \cdot 0 \rightarrow$	$\cdot 12.28 \rightarrow \cdot \cdot 97245$	$6 \longrightarrow \cdot \cdot 195 -$	\rightarrow 18.00 \rightarrow 1471919	$\longrightarrow \cdot \cdot 304 \longrightarrow \cdot 11.61 \rightarrow$	• 74535
S→·01-02-21-	$\rightarrow \cdot 00: 15 \rightarrow \cdot \cdot 0 \rightarrow$	$\cdot 12.30 \rightarrow \cdot \cdot 97385$	$7 \longrightarrow \cdot \cdot 195 -$	\rightarrow 17.98 \rightarrow 1470226	$\longrightarrow \cdot \cdot 304 \longrightarrow \cdot 11.56 \rightarrow$.74198
$S \longrightarrow 01 - 02 - 21 - 02 - 02$	$\rightarrow \cdot 00: 30 \rightarrow \cdot \cdot 0 \rightarrow$	$\cdot 12.23 \rightarrow \cdot \cdot 96825$	$8 \longrightarrow \cdot \cdot 195 -$	\rightarrow 17.87 \rightarrow 1461656	$\longrightarrow \cdot \cdot 304 \longrightarrow \cdot 11.46 \rightarrow$	• 73557
$S \longrightarrow 01-02-21-$	$\rightarrow \cdot 00: 45 \rightarrow \cdot \cdot 0 \rightarrow$	$\cdot 12.23 \rightarrow \cdot \cdot 96806$	$4 \longrightarrow \cdot \cdot 195 -$	\rightarrow 17.88 \rightarrow 1462235	$\longrightarrow \cdot \cdot 303 \longrightarrow \cdot 11.51 \rightarrow$	73905
S→·01-02-21-	$\rightarrow \cdot 01:00 \rightarrow \cdot \cdot 0 \rightarrow$	$\cdot 12.25 \rightarrow \cdot \cdot 97000$	$4 \longrightarrow \cdot \cdot 195 -$	\rightarrow 17.88 \rightarrow 1462414	$\longrightarrow \cdot \cdot 304 \longrightarrow \cdot 11.49 \rightarrow$.73747
$s \longrightarrow 01 - 02 - 21 - 02 - 02$	$\rightarrow \cdot 01: 15 \rightarrow \cdot \cdot 0 \rightarrow$	$\cdot 12.29 \rightarrow \cdot \cdot 97309$	$9 \longrightarrow \cdot \cdot 195 -$	\rightarrow 17.92 \rightarrow 1465728	$\longrightarrow \cdot \cdot 303 \longrightarrow \cdot 11.54 \rightarrow$	• 74056
$s \longrightarrow 01 - 02 - 20 - 02 - 20 - 02 - 02$	$\rightarrow \cdot 01: 30 \rightarrow \cdot \cdot 0 \Rightarrow$	\cdot 12.21 \rightarrow \cdot 96640	$5 \longrightarrow \cdot \cdot 195 -$	\rightarrow · 17.83 \rightarrow · 1458305	$\longrightarrow \cdot \cdot 303 \longrightarrow \cdot 11.48 \rightarrow$	• 73700

Bild 22 Beispiel einer Rundata-Textdatei

Jede Zeile beginnt mit einem Präfix (das in Zeile 1 definiert ist)

- Kalibrierdaten
- Normale Messdaten
- Validierungsdaten
- S ein Lauf, bei dem die Kalibrierung oder Validierung beginnt
- Wartung
- Schlecht dieser oder der vorherige Lauf hatte einen wesentlichen Funktionsfehler wie Probenahme, Detektor, Temperatur, Durchfluss, Druck usw.

Nach dem Trennzeichen (Tab+User_defined_delimiter*) werden die Daten in TT-MM-JJJJ und Uhrzeit HH:MM angegeben, aber alle diese Felder sind mit der Überschrift in Zeile 2 gekennzeichnet und sollten sich selbst erklären. Jede Zeile/Zeile wird mit ShiftIn+CarriageReturn+LineFeed beendet

*Das standardmäßige benutzerdefinierte Trennzeichen ist ein Leerzeichen, aber dies kann in "Programm bearbeiten: Einstellungen -> Rundata-Ausgabetextformat" in "," oder ";" geändert werden. oder '.' oder '#' oder zurück zum Standardabstand, wie in Bild 26 gezeigt.

Rundata output text format
Save concentration values with : ✓ measured integration area ✓ measured retention times
Use <tab> delimiters with</tab>
Select network folder for backup
C:\Lazarus_projects
<u>✓ OK</u> X Cancel Ø <u>H</u> elp

Bild 23 Das Fenster Programm bearbeiten: Einstellungen - Rundata-Ausgabetextformat

3.4.2 Datenverarbeitung

Wie bereits unter 2.1 Sicherheitshinweis "Datenverlust auf eigene Gefahr" ausgeführt, sichern Sie die Daten auf Wunsch regelmäßig

Sind Änderungen aufgetreten oder vorgenommen worden, die die Messung instabil gemacht haben, kann durch regelmäßiges Nachbearbeiten der Originaldateien der Übeltäter früher erwischt und ein besseres Gesamtergebnis erzielt werden. Es wird daher empfohlen, nach dem Übertragen der Daten die Chromatogramme im Folgenden zu überprüfen:

- Unerwartete zusätzliche Peaks
- Instabile Grundlinie
- Verschieben von Aufbewahrungszeiten
- Änderungen der eingestellten Parameter für Temperatur, Druck und Durchfluss

Dies kann an einem anderen PC mit der GC-Demoversion oder im Animationsmodus erfolgen.

Da die Maschine die alten Messdaten nicht benötigt, können nach erfolgreicher Sicherung die Originaldateien gelöscht werden, um Speicherplatz auf dem Laufwerk zu sparen.

3.5 Software und Elektronik

Für genauere Informationen zu elektrischen Komponenten wie "Externe Kommunikations-E/A" (für die Fernsteuerung) wenden Sie sich an den Händler oder Synspec. Diese Informationen können später auch in einem längeren vollständigen Handbuch bereitgestellt werden.

3.6 Gekühlte Anreicherung

Ergebnisse mit niedrigsiedenden und instabilen Stoffe konnten durch die Verwendung eines gekühlten Anreicherungsröhrchen verbessert werden.

Das gekühlte Vorkonzentrationsrohr wird mit Peltier-Elementen gekühlt. Nach dem Start des GC dauert es einige Minuten, bis die gewünschte Temperatur erreicht ist. Um dies im kontinuierlichen Modus beizubehalten, sollte die Raumtemperatur innerhalb der Spezifikationen liegen. Weitere Informationen dazu finden Sie in Kapitel 2.3.1. Im Allgemeinen wird für die besten Ergebnisse eine stabilere und niedrigere Raumtemperatur empfohlen.

Um ein Einfrieren oder Kondensieren zu vermeiden, ist eine Trocknung des Messgases erforderlich. Es wird empfohlen, einen Perma Pure-Trockner auf Basis von Nafion[®] zu verwenden. Beachten Sie die Einschränkungen dieser und anderer Arten von Trocknungssystemen, wasserlösliche Kohlenwasserstoffe neigen dazu, durch den Perma Pure-Trockner zu dringen.

Verwenden Sie in Kombination mit einem solchen Trockner keine Anreicherungstemperaturen unter dem Gefrierpunkt, dies würde das System mit Sicherheit blockieren.

Figure 8 Left normal pre-concentration, middle and right cooled pre-concentration

3.7 Stabilitätskompensation des PID-Detektors

Die Stärke einer PID-Lampe lässt mit zunehmendem Alter langsam nach, dies würde eine regelmäßige Kalibrierung erforderlich machen. Dieser Effekt kann durch Hinzufügen von "BKWord=TRUE" zur Datei GCX55id.txt verfolgt werden, wobei in diesem Fall die Empfindlichkeit der PID-Lampe zu Beginn jedes Durchlaufs gemessen und als BKword gespeichert wird.

Eine automatische Korrektur dieser Abnahme kann mit ,BKWADJUST=TRUE' in der GCX55id.txt aktiviert werden. Das Hintergrundsignal wird auch durch die Konzentration von Kohlenwasserstoffen im Trägergas beeinflusst. Wenn Sie diese Funktion verwenden, wird dringend empfohlen, nach jedem Wechsel des Trägergases neu zu kalibrieren.

3.8 Übersicht Systemalarme

Im Alarmfall erscheint die Meldung auf dem Bildschirm und es erfolgt ein Eintrag in die Logdatei. Die Datenübertragungsleitungsregistrierung eines allgemeinen Systemalarms ist nur praktisch. Ein Beispiel für Fehlermeldungen auf dem Bildschirm ist in Bild 25 dargestellt.

Zusätzlich leuchtet auch die Fehler-LED an der Front:

- Blinken, falls der Analysator weiterlaufen kann
- Dauerhaft brennen, falls ein Neustart erforderlich ist

Bild 25 Fehlermeldungen

Bericht auf den Schirm	Bericht in Alarm Datei	Kommentare
Systemalarm	Systemalarm	Jodor Systemalarm
		Jeder Systematanni
FID-Lampementel	FID-Lampementel	-
Apreicherung		-
Anreicherung	Anreicherung temperaturatarm	-
	Ofentemaneuturaleum	
Orentemperaturalarm		-
Innentemperatur > 40°C	Innentemperatur > 40°C	Messung im Genause
MINFlow-Alarm	niedrig	-
Maxflow-Alarm	Istwert durchfluss Säule zu hoch	-
Alarm Komponentwert L	Alarm Komponentwert L	-
Alarm Komponentwert H	Alarm Komponentwert H	-
Unterdruckalarm *	Carriergasdruck zu niedrig	GC lauf wird blockiert
Maximaldruckalarm *	Carriergasdruck zu hoch	GC lauf wird blockiert
Probendruckfehler	Probendruckfehler	
MX8-Board-Alarm	MX8-Kartenfehler	
	MX8-Board-Fehler behoben	Nur in Alarmdatei
Tstrip-Board-Alarm	Tstrip-Board-Alarm	
	Tstrip-Alarm gelöscht	Nur in Alarmdatei
Stepper-Alarm	Stepper-Alarm	
	Stepper-Alarm gelöscht	Nur in Alarmdatei
TCD-Alarm	TCD-Alarm	
	TCD-Alarm gelöscht	Nur in Alarmdatei
Startstatus prüft Minpress-	Startstatus prüft Minpress-	
Alarm*	Alarm*	
Startzustand prüft Maxpress-	Startzustand prüft Maxpress-	
Alarm*	Alarm*	
Voreinstellungsfehler	Voreinstellungsfehler	
Hacker-Alarm (TCP/IP-	Hacker-Alarm (TCP/IP-	
Datenlogger-Zugriff)	Datenlogger-Zugriff)	
< 30 MB freier Speicherplatz	< 30 MB freier Speicherplatz auf	
auf der Festplatte	der Festplatte	
< 10 MB freier Speicherplatz	< 10 MB freier Speicherplatz auf	Festplatte ist voll
auf der Festplatte (HD voll)	der Festplatte (HD voll)	
SS-Flussfehler auf Kanal ##	SS-Flussfehler auf Kanal ##	Nur bei aktivem Mehrkanalwähler
SS falscher Durchfluss auf	SS falscher Durchfluss auf	Nur bei aktivem Mehrkanalwähler
Kanal ##	Kanal ##	
SS-Kanalalarm Komponent L	SS-Kanalalarm Komponent L	Nur bei aktivem Mehrkanalwähler
SS-Kanalalarm Komponent H	SS-Kanalalarm Komponent H	Nur bei aktivem Mehrkanalwähler
SS-Kommunikationsfehler	SS-Kommunikationsfehler	Nur bei aktivem Mehrkanalwähler

Die Datei GCX55.log enthält neben Alarmen auch Berichte über verschiedene Aktionen: Start und Stopp des Analysators, Validierungsaktionen usw. Die Liste ist nicht vollständig.

Start-up und Kommunikation	Öffnen und Schließen aller COM-Ports
	Fehlende Kommunikation über Leitung
	Manuelles oder automatisches An- und Abfahren
Benutzeraktivität	Wartung aktiviert / deaktiviert
	Zusätzlich zum Ergebnisbericht wurde die Autolinearisierung gestartet
	Zusätzlich zum Ergebnisbericht wurde die automatische Validierung gestartet
Sampling-Probleme im Detail	Probefehler: Überlappende Probenahmestriche. Aktuellen Schlag abbrechen
	Probenfehler: Spülen während der Probenahme
	DoSampleAverage-Fehler: "Schritte" ist null. Verwendung von
	NULL_AVERAGE ' (IPV-Laufzeitfehler!!)
	DoSampleAverage-Fehler: "Druck" ist Null. Verwendung von
	NULL_AVERAGE') (IPV-Laufzeitfehler!!)
	DoSampleAverage-Fehler: "SampleCount (Striche)" ist Null.
	Verwendung von NULL_AVERAGE') (IPV-Laufzeit!!)
	DoSampleAverage-Fehler: "Probendruck" ist Null.
	Mit Faktor 1') (IPV-Laufzeitfehler!!)
Statusfehler	FEHLER: Detektor(en) können nicht kompensiert werden
	Zu viele Peaks gefunden (maximal 1000)
	Temperaturfehler des Anreicherungsröhrchens
	Ofentemp-Fehler
	Voreinstellungsfehler
	Problem beim Schreiben von Laufdaten und beim Erstellen von
	Sicherungskopien
	Watchdog-Fehler

4. Wartung

Bevor Sie fortfahren, vergewissern Sie sich, dass Kapitel 2.1 Sicherheitshinweise sorgfältig gelesen wurde.

Die Service- und Wartungskapitel sind nur für geschultes Servicepersonal bestimmt, ansonsten zugefügte Schäden auf eigene Gefahr.

4.1 Wartungshäufigkeit

Nachfolgend finden Sie eine Übersicht über die empfohlene frequenz für Wartungsarbeiten an einem kontinuierlich verwendeten Synspec GCX55 der Serien 600 und 800.

Frequenz	Wartungsarbeiten	Geschätzte benötigte Zeit in Stunde(n)
alle 2-4 wochen	Kalibrierung (PID fällt langsam ab)	0.5-3
alle 2-4 wochen	Qualitätssicherungs- und Qualitätskontrollen	
jeden Monat	Validierung, entweder manuell oder automatisch	
jeden Monat	Überprüfen Sie die Gasversorgung, den Filtereinlass und das Teflon-Filterblatt	
jedes Jahr	Staub vom Ventilator entfernen	0.1
alle 2 Monate	Austausch des Mikrostaubfilters für die Probenahme	0.1
jedes Jahr	Sichern und löschen Sie alte Dateien vom Laufwerk	0.5
jedes Jahr	Prüfung auf Ofentürverschluss	0.1-1
jedes Jahr	Reinigung der FID	1
jedes Jahr	Reinigung der PID-Lampe	1
jedes Jahr	Inspektion des Probenahmekolbens, Reinigen und Fetten des	
	Kolbens	0.2 - 1
jedes Jahr	Erneuern Sie den externen Probenschlauch	1
jedes Jahr	Austausch der (gekühlten) Anreicherung	1
jedes Jahr	Austausch des Diaphragmas vom 10-Wege Ventil	2
jedes Jahr	Austausch der internen Trägergasfilter	0.5
alle 2-4 Jahre	Austausch des analytischen Schlauchsets	1
alle 2 Jahre	Austausch des PID-Kopfes	
alle 3-4 Jahre	Austausch des FID (Nur wenn das Signal schlecht geworden ist)	
alle 3-6 Jahre	-6 Jahre Austausch der Säule	

4.1.1 Kein Alarm an den Ausgängen während der Wartung

Wenn beispielsweise ein externer Datenlogger verwendet wird, der die GC-Alarmfunktion verwendet, kann es sinnvoll sein, die Wartungsfunktion zu verwenden. Während sich das Programm im Wartungsmodus befindet, wird der Alarmzustand außer Kraft gesetzt und nicht gesendet. Daten in diesem Modus werden wie in Kapitel 3.4.1 beschrieben markiert. Der Wartungsmodus kann unter "Runddaten – Option – Wartung aktiv" aktiviert werden, dies fügt ein Häkchen (✓) vor dieser Aussage hinzu und zeigt auch die Nachricht mit der linken Dauer auf dem Bildschirm an. Dieser Modus sollte nach der Wartung manuell deaktiviert werden. Bitte siehe Bild 26.

4.1.2 Erforderliche Ausrüstung

Synspec liefert eine Toolbox alle Auszubildenden und mit der Lieferung jeder Maschine, kann aber auch separat bestellt werden. Diese Werkzeugkiste enthält die wesentlichen mechanischen Werkzeuge für die Wartung, diese Werkzeuge sind in Bild 27 dargestellt.

Für die meisten Wartungsarbeiten ist ein gut beleuchteter, staubfreier, ESD-sicherer Arbeitsbereich erforderlich. Außerdem wird ein Multimeter zur Überprüfung elektrischer und elektronischer Probleme und ein Durchflussmesser zur Durchflussmessung benötigt.

Bild 27 Erforderliche Mindestwerkzeuge für die Standardwartung und Inhaltsliste der Synspec-Toolbox

Werkzeuge der Synspec-Toolbox Sowie teilweise gezeigt in <i>Bild 27</i>
Schraubenschlüssel 4 & 5 mm
Schraubenschlüssel 6 & 7 mm
Schraubenschlüssel 10 & 11 mm
Schraubenschlüssel 1/4 & 5/16" (*)
Schlüssel 3/8 & 7/16" (*)
Schraubenzieher flach 100/1
Schraubenzieher flach 100/2 (*)
Kreuzschlitz-Schraubenzieher 205
2,5 x 90
Kreuzschlitzschraubenzieher 205 2
x 80 (*)
Inbusschlüssel 2mm
Inbusschlüssel 2,5 mm
Inbusschlüssel 7/64″
Inbusschlüssel (mit Tgrip) 9/64″
Gebogene Spitzzange
Säulenschneider
Gebogene Zange 150mm

4.2 Öffnen der Maschine

Bevor Sie fortfahren, vergewissern Sie sich, dass Kapitel 2.1 Sicherheitshinweise sorgfältig gelesen wurde.

Trennen Sie erneut alle Verbindungen zur Maschine, bevor Sie die Abdeckung entfernen.

Die Maschine wurde verbessert, um sie für Reparaturen leichter öffnen zu können. Wenn die obere und untere Abdeckung entfernt werden, sind fast alle Teile direkt zugänglich.

4.2.1 Verdeck öffnen

- Führen Sie die vorbereitenden Schritte durch (Herunterfahren, Trennen usw.)
- Entfernen Sie die 2 + 4 = 6 Schrauben auf jeder Seite der Maschine, wie in Bild 28 gezeigt (also insgesamt 12)
- Öffnen und entfernen Sie das kleinere obere Ofenfach (die obere Rückwand)
- Heben Sie die gesamte obere Platte (einschließlich der Seiten) an und entfernen Sie sie

Bild 28 Seitliche Schrauben

4.2.2 Öffnen des Bodens

- Führen Sie die vorbereitenden Schritte durch (Herunterfahren, Trennen usw.)
- Entfernen Sie bitte die 12 Schroaben sowie gezeigt wird in Bild 28
- Entfernen Sie vorsichtig die 12 Schrauben wie in Bild 29 gezeigte Bodenplatte und trennen Sie den Lüfterstecker

Bild 29 Untere Schrauben

4.3 Dichtheitsprüfung

Nach Wartungsarbeiten am Schlauch sollte immer ein Lecktest durchgeführt werden.

Die Lecks können hauptsächlich in 2 Arten platziert werden, Lecks im Trägergassystem oder im Probennahmesystem. Trägergas sind Überdrucklecks, bei denen die Probenlecks unter Unterdruck stehen. Bei Überdruck tritt Gas aus, bei Unterdruck wird Umgebungsluft angesaugt.

4.3.1 Trägergas

<u>Bevor Sie fortfahren, vergewissern Sie sich, dass Kapitel 2.1 Sicherheitshinweise sorgfältig</u> <u>gelesen wurde.</u>

Es ist erforderlich, dass die Maschine während Teilen der Wartung angeschlossen ist und <u>die entsprechenden Sicherheitsvorkehrungen getroffen werden.</u>

Im Allgemeinen liegt der untere Umgebungsdruck etwa 0,2 bar unter dem Umgebungsdruck. Dadurch könnte im Falle eines Lecks Raumluft in das System gesaugt werden, was die ersten Messungen beeinflussen würde. Dies kann auf folgende einfache Weise überprüft werden: Sie benötigen nur eine 1/8-Zoll-Swagelok-Kappe:

- 1. Starten Sie den GC
- 2. Starten Sie einen Durchlauf, überprüfen Sie im Programmbearbeitungsmodus, wann ein Probenahmehub beginnt.
- 3. Schließen Sie den Einlass zum 10-Wege-Ventil mit der Kappe
- 4. Beobachten Sie, dass der Druck auf einen Wert von 700 mbar abfällt und die Probennahmebewegung stoppt (diese 700 ist eine Einstellung in der Datei GCX55id.txt. Andere Werte bis hinunter zu 400 mbar sind für bergige Bedingungen möglich.
- 5. Öffnen Sie den Einlass erneut und sehen Sie, wie der normale Druck und die normale Bewegung zurückkehren.
- 6. Wenn Sie eine Kappe vermissen, können Sie den Einlass kurz mit einem flachen Gegenstand abdecken, den Sie drücken. In diesem Fall wird höchstwahrscheinlich noch eine kleine Bewegung vorhanden sein.

Falls Sie ein negatives Leck finden, ziehen Sie alle Anschlüsse in der Probenahmeleitung fest und versuchen Sie es erneut.

1. Die Anschlüsse des Trägergassystems kommen vom Trägergasanschluss auf der Rückseite, führen durch das linke Fach zu den Druck- und Durchflussreglern mit den Trägergasfiltern und dann zum Ofenfach.

Überprüfen Sie das System zuerst außerhalb des Ofens, wenn das System ausgeschaltet ist. Überprüfen Sie dann sorgfältig den Ofenraum, da das System dazu eingeschaltet sein muss. Dasselbe Gas wird auch zum Schalten von 3 Ventilen verwendet.

2. Öffnen Sie die untere Platte, stellen Sie das Analysegerät auf die Seite und prüfen Sie es mit Leckprüfseife oder -schaum auf Lecks.

Auch Leckagen am Druck- oder Durchflussregler oder an den Trägergasfiltern lassen sich am besten mit Leckprüfflüssigkeit aufspüren. Die Anschlüsse am Druckregler sind nicht so leicht zu erreichen, nehmen Sie sich Zeit, um sie zu inspizieren und festzuziehen. Die geraden und gebogenen Schlauchverbindungen in diesem Fach sollten immer mit zwei Schraubenschlüsseln festgezogen werden: Achten Sie darauf, einen Teil ruhig zu halten, während Sie den anderen drehen, um den Schlauch nicht zu verbiegen, anstatt die Verbindung festzuziehen.

- 3. Achtung: Bei diesem Test wird der Analysator bei geöffnetem Ofenraum eingeschaltet! Kontrolle des Garraums: Decken Sie den Säulenraum mit dem Garraumdeckel ab, damit nicht zu viel Wärme verbraucht wird. Die Maschine wird zunächst im Analysemodus mit Leckprüfseife überprüft: Starten Sie die Software und klicken Sie auf Lauf abbrechen. Überprüfen Sie alle Vici-Verbindungen mit dem richtigen 1/4-Zoll-Schlüssel.
- 4. Der Ofen wird abgekühlt, indem der hintere Schlitz geöffnet wird. Der Kolben wird über 2 Ventile gesteuert. Das 10-Wege-Ventil wird ebenfalls von einem Ventil gesteuert. Dieser Ventilblock kann undicht werden, insbesondere wenn er versehentlich mit einem Druck von über 5 bar beaufschlagt wurde. Die resultierende Leckage ist beträchtlich.
- 5. Eine gebrochene Säule erscheint zu zwei Zeitpunkten: entweder direkt nach einem Transport oder einige Stunden später. Im ersten Fall ist das Glas gebrochen, im zweiten Fall wurde der Polymerschutz abgekratzt. Nach dem Start kann die Säule noch einige Zeit halten und dann beim Aufheizen oder Abkühlen der Schläuche brechen.
- 6. Das Stahlrohr ist ziemlich stark. Die FEP-Schläuche, die wir an anderen Teilen verwenden, können nur durch unsachgemäße Handhabung beschädigt werden. Schläuche durch identische Teile ersetzen, Synspec kontaktieren.

Der Durchfluss der Analysesäule und der Durchfluss der Strippersäule sollten während der Wartung überprüft werden: Sie sollten zwischen den Wartungen gleich bleiben. Der Fluss wird in den Originaldaten bei der FAT bereitgestellt, Sie sollten ihn zu einem Teil Ihres QAQC-Verfahrens machen. Überprüfen Sie sie in beiden Konfigurationen des 10-Wege-Ventils, achten Sie darauf, nicht in den Momenten zu messen, in denen die Ofentür geöffnet und geschlossen wird, da der Durchfluss dann kurzzeitig schwankt.

Achtung: Ziehen Sie den Stecker für die Ofenheizung ab.

Der auf dem Bildschirm angezeigte Durchfluss ist der eingestellte Durchfluss des Massendurchflussreglers. Dies ist der Fluss, der aus dem Massendurchflussregler zur Analysesäule fließt. Wenn der Massendurchflussregler den eingestellten Durchfluss nicht erreichen kann, können Sie ihn auf dem Bildschirm ablesen. Wenn jedoch nach dem Massendurchflussregler ein Leck vorhanden ist, reagiert die Anzeige nicht darauf. Wenn Sie ein Leck vermuten, prüfen Sie mit feuchter Flüssigkeit an den Inline-Filtern, an der Ofenwand, am 10-Wege-Ventil: (Sie können dies nur bei geöffnetem Ofendeckel tun, um eine zu starke Erwärmung zu vermeiden, entfernen Sie den Anschluss für die Ofenheizung von der zentralen Spannungsversorgungsplatine.)

Der Stripperfluss kann einfach am Auslass des Stripperflusses auf der Rückseite des GC gemessen werden.

Wenn der Durchfluss stark abnimmt, ist ein Leck aufgetreten. Dies geschieht meist an den Befestigungspunkten der Säulen.

Aufgrund von Vibrationen, die durch Pumpen oder Transportbewegungen verursacht werden, können jedoch andere Verschraubungen im System undicht werden.

An anderen Stellen können Lecks mit Seife (Soppy oder Snoop oder verdünnte Spülmaschinenflüssigkeit) gesucht werden. Ziehen Sie die Verschraubung wieder fest und prüfen Sie erneut.

Bei größeren Lecks wird auch deutlich, dass der Trägergasverbrauch zugenommen hat. Wenn kein Leck vorhanden ist, sollte der Stickstoffdruck des GC erst 30 Sekunden nach dem Abschalten der Stickstoffzufuhr abfallen.

4.3.2 Probe system

Probenahmesystem ist undicht

Undichte Verbindungen in der Probenahmeleitung

1. Überprüfen Sie dies, indem Sie eine Kappe auf den Probeneingang setzen: Die Kolbenhübe sollten jetzt nicht abgeschlossen sein. Der Kolben sollte sich nicht mehr bewegen und der Zähler sollte halten. Wenn sich der Kolben trotz Schließen des Probeneingangs leicht bewegt, haben Sie ein Leck. Überprüfen Sie alle Anschlüsse an der Leitung

4.4 Anreicherungsröhrchen

Aufgrund der Umgebung, in der sich die Röhre in der Füllung befindet, wird sie langsam zerfallen, und ein Austausch könnte erforderlich sein, um die optimale Leistung aufrechtzuerhalten. Da die Falle aufgrund der zur Kühlung verwendeten Elemente teuer ist, bot Synspec die Möglichkeit, die Falle auszutauschen. Synspec recycelt die Falle mit Ausnahme des Fallenvolumens. Dieses Recycling ist eine sehr spezialisierte Aufgabe und kann nicht von Kunden durchgeführt werden.

4.4.1 Wartungsschritte

Untersuchen Sie die Basistemperatur der Anreicherung. Dies kann in "Optionen – Wählt Diagramme zur Ansicht aus" ein-/ausgeschaltet werden, wie in Bild 30 gezeigt. Die Anreicherungstemperaturlinie sollte eine sehr steile Steigung haben. Und die Abklingzeit sollte wie gezeigt etwas allmählicher sein, aber sie muss vor dem nächsten Lauf zu einer stabilen Grundlinie

Bild 30 Temperaturdiagramm der Vorkonzentration

Meldet das Anreicherungsrohr keine Temperaturänderung, prüfen Sie, ob sich die Lötstellen gelöst haben. Wenn ein gekühltes Vorkonzentrationsrohr verwendet wird, überprüfen Sie außerdem, ob das Gerät noch Wärme transportiert und sich der Kühlkörper aufheizt.

Wenn die Temperatur langsam ansteigt und den Sollwert nicht erreicht, ist möglicherweise während der Leerlaufzeit Wasser in das System eingedrungen. Ein Ersatz wäre die beste Option.

Wenn soweit alles in Ordnung scheint, kann das System auf Linearität und Reproduzierbarkeit des Systems überprüft werden. Wenn es immer noch keine Probleme gibt, herzlichen Glückwunsch! Dann würde das Gerät optimal funktionieren.

4.4.2 Ersatz

- Führen Sie die vorbereitenden Schritte durch (Herunterfahren, Trennen und Öffnen der Maschine usw.)
- Suchen Sie die Filter und das MX-Mainboard wie in Kapitel 1.4 gezeigt
- Lösen und entfernen Sie die Thermoelementdrähte von der MX-Hauptplatine
- Lösen Sie die Stromkabel, bei der beheizten Variante sind dies die 2 Anschlüsse am Anreicherungsrohr selbst. Folgen Sie bei der gekühlten Variante den Lüfter- und Peltierkabeln und trennen Sie sie an ihren jeweiligen Anschlüssen.
- Lösen Sie den Schlauch am Anreicherungsröhrchen
- Platzieren Sie das neue Anreicherungsröhrchen in der Maschine
- Um es zu montieren, kehren Sie die Schritte um; * Maschine montieren, anschließen und wieder schließen
- Überprüfen Sie die Trägergasschläuche auf Dichtheit, wie in Kapitel 4.3.1 beschrieben

* Verwenden Sie optional einige Kabelbinder, um zu verhindern, dass das empfindliche Thermoelement durch Bewegung abbricht.

4.5 Bypasspumpe

Mit der KNF-Pumpe kann die Probeluft bis zum Eingang gepumpt werden. Unter optimalen Bedingungen hat es eine sehr lange Lebensdauer. Bei unzureichender Filterung kann sich jedoch Staub im Gerät ansammeln und die Pumpe blockieren.

Wenn der Schwefeldioxidgehalt in Ihrer Umgebungsluft hoch ist, werden die Stoßdämpfer der Pumpe spröde und brechen. Diese können einfach durch beliebige ähnliche Stoßfänger ersetzt werden.

4.5.1 Ersetzungsschritte

- Führen Sie die vorbereitenden Schritte durch (Herunterfahren, Trennen und Öffnen der Maschine usw.)
- Lokalisieren Sie die Pumpe wie in Kapitel 1.4.2 gezeigt
- Trennen Sie die Kabel der Pumpe, achten Sie darauf, sich zu merken, welches Kabel wo angeschlossen war
- Demontieren Sie die Pumpe
- Setzen Sie die neue Pumpe und die Puffer in die Maschine ein
- Um es umgekehrt zu montieren, die Schritte; Maschine montieren, anschließen und wieder schließen
- Überprüfen Sie das gesamte System auf Dichtheit, wie in Kapitel 4.3 beschrieben
- * Achten Sie darauf, die Kabel der Pumpe nicht zu vertauschen

4.6 Filter

Um eine Verschmutzung des Trägergases im System zu vermeiden, wird das Gas für jeden Anwendungsfall gefiltert. Die genaue Lage der Filter ist in Kapitel 1.6 dargestellt. Neben dem planmäßigen Austausch, wie bereits in Kapitel 4.1 beschrieben, ist es auch ratsam, sie auszutauschen, wenn das Hintergrundionisationssignal zu hoch wird und ein Neustart dadurch nicht mehr möglich ist.

Es ist eher machbar, die Filter wiederzuverwenden. Dazu müssen sie in einen Ofen bei 200°C gestellt werden

Legen Sie sie für eine Nacht bei 200 in einen Ofen, während Sie sie mit Stickstoff 5.0 durchspülen. (Heizen ohne Spülen funktioniert nicht).
4.6.1 Ersetzungsschritte

- Führen Sie die vorbereitenden Schritte durch (Herunterfahren, Trennen und Öffnen der Maschine usw.)
- Suchen Sie die Filter wie in Kapitel 1.4.2 gezeigt
- Lösen Sie die Schlauchverbindungen mit einem 5/16-Zoll-Schraubenschlüssel, während Sie den Filter mit einem 10-mm-Schraubenschlüssel festhalten
- Entfernen Sie die alten Filter und markieren Sie sie optional
- Setzen Sie die (neuen und) gereinigten Filter in die Maschine ein
- Um es zu montieren, kehren Sie die Schritte um; Maschine montieren, anschließen und wieder schließen
- Überprüfen Sie das gesamte System auf Dichtheit, wie in Kapitel 4.3 beschrieben

Es ist eher machbar, die Filter wiederzuverwenden, der Hersteller die Filter zu reinigen is

- Montieren Sie die Filter in einem Ofen
- Stellen Sie den Ofen auf 200 °C* ein und lassen Sie Stickstoff (bei ~5 bar*) durch sie spülen
- Lassen Sie die Filter mindestens 12 Stunden lang stehen
- Schalten Sie den Durchfluss und den Ofen ab und nehmen Sie die Filter ab.
- Verschließen Sie diese gereinigten Filter, um eine Kontamination zu vermeiden, und markieren Sie sie optional

* Spülen ohne Druck oder Temperatur ist nutzlos

Head

O-Rin

Lamp

Clamp

Spring

Base

4.7 PID

Der PID ist das Herzstück des Messbetriebs und erfordert einiges an Wartung, um in einwandfreiem Zustand zu sein. Die gesamte Wartung ist bereits vorher im Kapitel vermerkt **Fout! Verwijzingsbron niet gevonden.**.

Stabile Hintergrundgeräusche werden vom MX-Mainboard automatisch herausgefiltert und somit kann der gesamte Verstärkungsbereich genutzt werden. Aber die Reduzierung externer Faktoren ist immer eine bessere Option. Eine Explosionszeichnung mit allen Einzelteilen zeigt Bild 32.

4.7.1 Ersetzungsschritte

- Demontieren Sie den PID wie in Kapitel 4.7.2 beschrieben
- Ersetzen Sie Teile, die defekt sind oder ersetzt werden sollen
- Überprüfen Sie, ob das Fenster der Lampe sauber ist. Wenn das Fenster verschmutzt ist, sollte das Lampenfenster mit Ammoniak oder Isopropanol gereinigt werden
- Überprüfen Sie den PID-Kopf auf Korrosion, ein Beispiel ist in Bild 35 dargestellt

Bild 32 Ein guter und erodierter Kopf

4.7.2 Demontageschritte

- Führen Sie die vorbereitenden Schritte durch (Herunterfahren, Trennen und Öffnen der Maschine usw.)
- Lokalisieren Sie die PID wie in Kapitel 1.4.1 gezeigt
- Entfernen Sie alle Schläuche, die sich oben auf dem PID befinden und im Weg sind
- Lösen Sie die 2 Anschlüsse des Schlauchs, die zum PID-Kopf führen
- Lösen und entfernen Sie die 3 Kreuzschlitzschrauben an der Unterseite der Wohnung, dadurch wird der PID vollständig freigegeben
- Entfernen Sie den PID von der Maschine, um die Bearbeitung zu erleichtern
- Entfernen Sie die 4 Elektroden, indem Sie sie vorsichtig aus ihren Anschlüssen ziehen
- Lösen und entfernen Sie vorsichtig die Eingangs- und Ausgangsschläuche. Lösen Sie die Steckverbinder nicht vollständig
- Lösen Sie die 3 langen Sechskantschrauben vom Oberteil des Melders und nehmen Sie das Oberteil ab. Achten Sie darauf, dass sich die Lampe löst und herausspringen könnte, halten Sie sie in diesem Fall vorsichtig zurück und versuchen Sie, das Fenster nicht zu berühren.
- Es gibt weitere 3 Sechskantschrauben in den 3 Klemmringstücken, die entfernt werden müssen. Einer dieser Klemmringe hat den Stecker, markieren Sie die Position dieses Steckers, damit er wieder richtig montiert werden kann.

Bild 31 Explosionszeichnung des PID

4.7.3 Montage schritte

- 1. Achten Sie darauf, die Richtung der Feder zu überprüfen. Die Lampe muss dem scharfen Ende dieser Feder gegenüberstehen
- 2. Senken Sie die Feder und die Lampe wieder in ihr Gehäuse ab
- 3. Bringen Sie die 3 Klemmringstücke an und bringen Sie sie wieder an. Achten Sie darauf, den Stecker an der Markierung auszurichten. Es wird empfohlen, die 3 langen Sechskantschrauben vorübergehend als Orientierungshilfe an ihren richtigen Stellen zu platzieren.
- 4. Platzieren Sie den neuen Kopf auf dem PID
- 5. Setzen Sie die 3 langen Sechskantschrauben ein und ziehen Sie sie fest, achten Sie darauf, sie nicht zu fest anzuziehen. Der Kopf kann sich aufgrund von Toleranzen in Feder und Lampe verschieben, keine Sorge.
- 6. Schieben Sie die 4 Elektroden wieder auf ihre Anschlüsse, dies kann schwierig sein A. Schwarz für Hochspannungsmasse, die zum unteren seitlichen Anschluss führt
 - B. Rot für Hochspannung selbst, die auf die Seite geht
 - C. Blau für Signalmasse, die an der Seite des Kopfes liegt
 - D. Gelb für Signaldaten, die nach oben gehen
- 7. Platzieren Sie den kompletten PID wieder in der Ofenwohnung
- 8. Setzen Sie die 3 Kreuzschlitzschrauben ein und ziehen Sie sie fest, um den PID an Ort und Stelle zu halten
- 9. Schließen Sie die Eingangs- und Ausgangsschläuche wieder an den PID an, achten Sie darauf, nicht zu fest anzuziehen, diese sind nicht aus Metall
- 10. Fügen Sie den Schlauch, der über den PID geführt wurde, wieder hinzu
- 11. Überprüfen Sie das gesamte System auf Dichtheit, wie in Kapitel 4.3 beschrieben
- 12. Schließen Sie die Maschine wieder

4.8 FID

Der FID muss regelmäßig gereinigt und nach Ablauf seiner Lebensdauer ersetzt werden.

4.8.1 Ersetzungsschritte

- 1. Demontieren Sie den FID wie in Kapitel 4.8.2 beschrieben
- 2. Schlechte Teile ersetzen
- 3. Reinigen Sie den FID-Kamin mit einer weichen Bürste
- 4. Eventuelle Verunreinigungen vom Rest des FID mit einer weichen Bürste entfernen. *Mit Ausnahme des dünnen und zerbrechlichen Filamentdrahts, der nicht berührt werden sollte
- 5. Handschuhe anziehen. Nehmen Sie ein kleines Becherglas und füllen Sie es mit verdünnter warmer Salzsäure. Machen Sie dies, indem Sie das Glas zu 2/3 mit warmem Wasser füllen und ca. 10% handelsübliche Salzsäure hinzufügen. (das ist eine 10 Prozentige Lösung, also ist die Salzsäurelösung am Ende etwa 1%)
- 6. Nehmen Sie den FID an der Keramikseite und halten Sie nur den Metallteil und nicht den Keramikteil für 2 Minuten in die Salzsäure
- 7. Spülen Sie die Metallteile mit Demineralisiertes Wasser ab und lassen Sie es trocknen
- 8. Montieren Sie alle Teile wieder. Schieben Sie den Schlauch so tief wie möglich in die Teflonbuchsen.

* Die Lötstellen auf dem FID und dem Spiraldraht sollten unberührt bleiben

Die Hauptwartung am FID ist die Reinigung von angesammeltem Ruß, 1 bis 2 Mal pro Jahr. Wenn der FID 3 Jahre verwendet wurde, ist ein Austausch oft besser. Wenn die Empfindlichkeit und der Geräuschpegel jedoch immer noch gut sind, ersetzen Sie es nicht.

Reinigen Sie den FID-Kamin mit einer Bürste. Reinigen Sie die anderen Teile am FID selbst vorsichtig mit einer kleinen Bürste. Vorsicht mit dem dünnen Filamentdraht: Dieses Material sollte nicht berührt werden. Der FID ist tief im Gerät montiert: Nehmen Sie sich Zeit, die Anschlüsse zu entfernen und wieder anzubringen.

Bild 33 FID komplett und zerlegt.

4.8.2 Ersetzungsschritte

- 1. Führen Sie die vorbereitenden Schritte durch (Herunterfahren, Trennen und Öffnen der Maschine usw.)
- 2. Lokalisieren Sie den FID wie in Kapitel 1.4.1 gezeigt
- 3. Entfernen Sie optional Schläuche, die sich über oder/und im Weg des PID befinden, optional könnte die mittlere Ofenwand entfernt werden
- 4. Den Schlauch zum FID entfernen und herausnehmen
- 5. Ziehen Sie den FID vorsichtig aus seiner Steckerbuchse
- 6. Bewegen Sie ihn in der gleichen Bewegung vorsichtig nach oben und hinten und nehmen Sie den Schornstein aus dem Loch
- 7. Entfernen Sie die Feder und legen Sie sie beiseite

8. Nehmen Sie das Metallteil vorsichtig durch Drehen vom Keramikteil ab. Um diesen Schritt zu erleichtern, wird empfohlen, ihn vor dem Drehen auf Handwärme zu erwärmen, indem Sie ihn festhalten.

Verfahren:

- 1. Anlage ausschalten, Gasanschlüsse entfernen. Seien Sie vorsichtig mit dem Wasserstoff.
- 2. Entfernen Sie die Ofenmittelwand, um mehr Platz zu haben, insbesondere beim Wiedereinbau des FID.
- 3. Nehmen Sie das T oben auf dem FID heraus.
- 4. Nehmen Sie den Schlauch zum FID heraus.
- 5. Ziehen Sie den FID vorsichtig aus seiner Steckerbuchse.
- 6. Bewegen Sie ihn in der gleichen Bewegung vorsichtig nach oben und hinten und nehmen Sie den Schornstein aus dem Loch.
- 7. Entfernen Sie die Feder und legen Sie sie beiseite.
- 8. Nehmen Sie das Metallteil vorsichtig durch Drehen vom Keramikteil ab. Um dies etwas einfacher zu machen, erwärmen Sie es auf Handwärme, bevor Sie mit dem Drehen beginnen.
- 9. Reinigen Sie den Schornstein mit einer weichen Bürste. Eventuelle Verunreinigungen vom Rest des FID mit einer weichen Bürste entfernen.
- 10. Handschuhe anziehen. Nehmen Sie ein kleines Becherglas und füllen Sie es mit verdünnter warmer Salzsäure. Machen Sie dies, indem Sie das Glas zu 2/3 mit warmem Wasser füllen und ca. 10% handelsübliche Salzsäure hinzufügen. (das ist eine 10 Prozentige Lösung, also wird die Salzsäure Konzentration etwa 1%). Nehmen Sie den FID an der Keramikseite und halten Sie nur den Metallteil und nicht den Keramikteil für 2 Minuten in die Salzsäure. Gut mit Demineralisiertes Wasser abspülen, trocknen lassen.
- 11. Die Lötstellen am FID und am Spiraldraht sollten unberührt bleiben.
- 12. Montieren Sie alle Teile wieder. Schieben Sie den Schlauch so tief wie möglich in die Teflonbuchsen.

Der FID muss wieder in die 5 Buchsen der kleinen Elektronikplatine gesteckt werden. Dieser muss normalerweise nicht ausgetauscht werden.

Bild 34 FID-Aufdruck und im Detail die 5 Anschlusspins für das Signal.

4.9 Dateisicherung

Die Festplattenkapazität wird jedes Jahr größer. Heutzutage ist es kaum zu glauben, dass Synspec 1994 mit einer Festplatte von 140 MB gestartet ist. Dennoch füllt sich die Festplatte, insbesondere bei kurzen Analysezyklen oder einem Doppelsystem.

Es sollte regelmäßig ein Backup durchgeführt werden. Das Wichtigste zum Kopieren ist immer die rundata.txt bzw. die rundatamonth.txt, da diese die ASCII-Datei mit den Ergebnissen jeder Messung enthält.

4.9.1 Wartungsschritte.

- 1. Kopieren und sichern Sie die gesamte rundata.txt oder die rundatamonth.txt und alle Datendateien auf ein anderes Medium und löschen Sie diese Dateien dann vom Laufwerk, um Speicherplatz freizugeben. Dies sind alles '*.bin'-Dateien in den monatlichen Unterverzeichnissen.
- 2. Wenn das GCX55.log größer als 0,5 MB ist, wird empfohlen, es umzubenennen oder auf ein anderes Medium zu kopieren und das Original zu löschen. Eine neue Protokolldatei wird automatisch generiert.
- 3. Erstellen Sie ein Sicherheits-Backup der Kalibrierungsdateien und der Funktionsgrundlagen (GCX55.exe, act_run.prg, act_calib.dat, GCX55id.txt), um sie zusammen mit den Bin-Dateien zur späteren Bezugnahme aufzubewahren.

4.10 Datenkommunikation mit externen Datenloggern.

Von unserer Seite sind mehrere Versionen der Datenprotokollierung verfügbar. Auch eine Ethernet-Verbindung ist möglich. Ein Problem tritt am häufigsten in drei Fällen auf:

- Bei Datenloggern: Erst am Ende eines Zyklus wird ein neuer Wert über die RS232-Schnittstelle übertragen. Dies unterscheidet sich von vielen anderen Instrumenten, die an derselben Stelle vorhanden sein können. Daher wird der RS232-Port in vielen Fällen häufig vom Datenlogger des Kunden angesprochen. Wenn dies bei Instrumenten auftritt, die so eingestellt sind, dass sie viele Parameter gemessener Peaks oder Statuseinstellungen übertragen, kann das System sehr langsam werden oder ausfallen. Bitte stellen Sie die Datenlogger-Frequenz auf den niedrigsten möglichen Wert ein, vorzugsweise einmal pro Zyklus. Wenn Sie ein Modem für die Datenaufzeichnung verwenden, sollte es eine Geschwindigkeit von mindestens 54 kBps haben.
- Einige Arten von Datenerfassungsprogrammen, wie die Busprogramme, weisen viele subtile Variationen auf. Der GC kann im Prinzip auf Kommunikation eingestellt werden, aber wir benötigen detaillierte Informationen über das Protokoll der Datenprotokollierungssoftware. Gerne nehmen wir zum Informationsaustausch Kontakt mit der Softwareabteilung des Kunden auf.
- 3. Eine Ethernet-Verbindung ermöglicht eine schnelle Datenübertragung. Wir raten davon ab, sich an einem Büronetzwerk mit zentralem Backup anzumelden. Dies bedeutet, dass jedes Mal, wenn eine neue Datei gespeichert oder eine Datei geändert wird, eine Kopie über das Netzwerk erstellt wird. Für einen Standard-GC bedeutet dies, dass am Ende jedes Zyklus die bin-Datei und die rundata.txt kopiert werden müssen. Am Ende eines Monats kann dies zu viel für das System sein, was zu einer Fehlermeldung führen würde. Aufgrund dieser Meldung würde der Datei GCX55.log eine Zeile hinzugefügt. Daher würde auch GCX55.log gesichert werden, was einen weiteren Fehler verursacht usw., und das System würde hängen bleiben. Die Anmeldung an einem zentralen Netzwerk ist möglich, aber es sollte ueberprueft werder ob alles einwandfrei funktioniert.

5. Fehlerbehebung.

Dieses Kapitel beschreibt die am häufigsten auftretenden Probleme und ihre Lösungen. Bevor Sie die vorgeschlagene(n) Lösung(en) anwenden, vergewissern Sie sich, dass die in Kapitel 2.1 Sicherheitshinweise aufgeführten Vorsichtsmaßnahmen getroffen wurden.

Um die meisten Softwareänderungen in der GC-Software anzuwenden, ist ein vollständiger "Stop Run" und "Start Run" erforderlich, aber für größere Änderungen kann es auch sein, dass die Maschine aus- und wieder eingeschaltet werden muss.

Wenn das Problem Konsistenz ist und nicht mit den unten angegebenen Lösungen gelöst werden kann, wenden Sie sich an Ihren Händler oder an Synspec.

5.1 Optimierung.

Einige Hauptgründe dafür, dass Sie die Anleitung zur Fehlerbehebung nie benötigen, sind:

- Verwendung von QAQC-Verfahren.
- Schulungspersonal und Personal.
- Durchführung aller Wartungsarbeiten (monatlich, jährlich, zweijährlich usw.).
- Regelmäßige Überprüfung des Analysators auf geringfügige Änderungen der Eigenschaften.

5.2 Fehlerbehebungstabellen.

5.2.1 Startprobleme.

Symptom	Möglicher Verdachtigt	Lösung
Rechner startet nicht, Windows-Fehlermeldung	Lose Stecker	Überprüfen Sie, ob die Anschlüsse im Computerfach vorhanden sind, sie könnten sich während des Transports gelockert haben
	Durchgebrannte Sicherung	Tauschen Sie die Netzsicherung aus und prüfen Sie beim nächsten Einschalten, was passiert. Möglicherweise liegt ein elektrisches Problem im Gerät vor
	Computerausfall	Überprüfen Sie alle Computeranschlüsse und überprüfen Sie, ob sich der CPU-Lüfter dreht. Versuchen Sie außerdem, ohne Festplatte oder Ram-Stick(s) zu booten, dies sollte eine Warnung auslösen, wenn das Motherboard noch funktionsfähig ist
	Laufwerksausfall	Überprüfen Sie, ob der PC beim Start Kontakt zum Laufwerk aufnehmen kann
GC-Software startet nicht	Dateien fehlen (nach Stromausfall)	Im Backup-Bereich des Laufwerks befindet sich eine Kopie der ursprünglichen Einrichtung. Fehlende Dateien vergleichen und kopieren
	Bootprogramm geändert	Standardmäßig wird die GC-Anwendung zur Startsequenz hinzugefügt und eine Verknüpfung auf dem Desktop erstellt. Fügen Sie die Software an diesen Stellen erneut hinzu
GC-Software zeigt keine echten Werte an	Demo ist gestartet	Wenn versehentlich die mitgelieferte Demo-Software gestartet wird. Finden Sie die richtige Version und starten Sie stattdessen diese
GC Fehlermeldung (Fehler anzeige von der	Allgemein / nicht aufgeführt	Überprüfen Sie die Fehlermeldungen, korrigieren Sie sie und starten Sie neu
Software)	Falsches Com port	Überprüfen Sie den eingestellten MX-Port und stellen Sie ihn richtig ein. Intern liegt er wahrscheinlich bei 4 und extern zwischen 1 und 3
	Störung der PID- Lampe	Meistens ein schlechter Kontakt im Detektor, der überprüft werden muss
	Fehler in der Elektronikplatine	Überprüfen Sie die Anschlüsse und starten Sie neu. Prüfen Sie, ob an jeder Elektronikplatine beim Start eine Funktionslampe aufleuchtet und danach erlischt. Wenn nicht, wenden Sie sich an den Händler, um Hilfe zu erhalten
	Gasversorgung falsch	Überprüfen Sie die Wasserstoff- und Luftversorgung und deren Drücke. Nach einer Abschaltung enthält die Wasserstoffleitung nur noch Luft, daher ist mit einer leichten Anlaufverzögerung zu rechnen. Die Wasserstoffleitung kann auch auf Wassertröpfchen (Nasswäscher) überprüft werden, diese blasen die Flamme aus
	Zu kalt	Ein kalter FID zuendet sehr langsam, versuchen Sie es noch ein paar Mal

Falsches	Zum starten des FID kann es hilfreich sein während den
Brenngasverhältnis	Start der Nullluft-Druck etwas ze verringern

5.2.2 "Startbereit" aber startet nicht

Symptom	Möglicher Verdachtigt	Lösung
Warten auf	Synchronisation	Es ist noch nicht die eingestellte Synchronisationszeit
Synchronisation	nicht erfüllt	
Hintergrundkompensation	Verrauschter FID-	Der FID-Detektor kann laut sein, wenn er kontaminiert
nicht möglich	Detektor	ist, und daher liegt der Hintergrund innerhalb der
		Anforderungen zum Starten, Überprüfen der Versorgung
		und Durchführen einer sauberen Spülung
Hintergrund nahe Null	Sehr schwaches	PIDs, die ihre erwartete Lebensdauer überschritten
	PID-Signal	haben, emittieren fast kein Licht mehr, es wird
		empfohlen, sie innerhalb des vorgesehenen Zeitfensters
		auszutauschen
Einstellung bei digitaler	Die Software	Wenn das System mit externen Loggern verbunden ist,
Kommunikation	verfügt über	wartet das Programm möglicherweise auf eine externe
funktioniert nicht	zusätzliche	Statusänderung. Trennen Sie dieses Gerät, starten Sie es
	Einstellungen für	neu und prüfen Sie, ob das System startet
	spezielle	
	Startmodi	

5.2.3 Messungen sind diskontinuierlich

Symptom	Möglicher Verdachtigt	Lösung
Es beginnt kein neuer Lauf	Ausführung stoppen wurde angeklickt	Klicken Sie auf "Lauf starten"
Es verpasst manchmal einen Lauf	Zykluszeit zu nah an Sync-Zeit	Mindestens 10 Sekunden zwischen Zyklusende und Synchronisieren einstellen. Bei einem 30- Minuten-Zyklus mindestens 15 Sekunden verwenden
Das Setzen der Grundlinie auf Null dauert lange	Rauschen auf der Grundlinie	Ein schlechter Kontakt oder ein schlechter Detektor selbst könnte der Übeltäter sein. Überprüfen Sie die Kontakte und versuchen Sie, sie auszutauschen
Es wartet mehrere Minuten vor einem neuen Lauf	Die Synchronisierungszeit ist falsch eingestellt	Überprüfen Sie die Synchronisierungszeiteinstellungen und stellen Sie das Timing auf die gewünschte Frequenz ein. Das Programm wartet nach jedem Zyklus auf diese Synchronisation
Problem beim Schreiben von (Log-)Dateien	Protokolldateien haben aufgrund eines Berichts über gleichzeitig auftretende Fehler eine beträchtliche Größe	Suchen Sie nach dem Kommunikationsproblem im System (im Protokoll aufgeführt), sonst tritt dies nur erneut auf. Überprüfen Sie die Größe der Protokolldatei und der Datendateien. Erstellen Sie eine Sicherungskopie und entfernen Sie das Original. Wenn es sich um ein Konsistenzproblem handelt, fragen Sie den Händler nach möglichen Updates für die Firmware (und notieren Sie die aktuelle Version).
Systemneustarts, Fehlende Daten, blauer Bildschirm	Problem(e) mit der Stabilität des Computers	Überprüfen Sie die Protokolldatei, um nach einem automatischen Neustart zu suchen. Beobachten Sie das System, um nach einem möglichen Auslöser des Stopps Ausschau zu halten. Der Computer und seine Komponenten können ebenfalls überprüft werden
Error PID, Ofen Temperaturfehler oder Flussfehler wird eingeblendet	Kommunikationsproblem	Überprüfen Sie die Verkabelungen, diese Meldungen werden durch schlechte Verkabelung zwischen der Elektronik des GC und dem Computer erzeugt. Wenden Sie sich für mögliche Aktualisierungen der Firmware an den Händler
Stoppt durch ueberlaufen von Integrierungswerte	Der Probenahmekolben beendet einen Hub nicht	Bitte kontrollieren Sie der Probenahmezylinder. Es koennte verstopft sein oder es muss neu eingefettet werden

5.2.4 Keine Peaks, (fast) flache Grundlinie.

Symptom	Möglicher Verdachtigt	Lösung
Nur sehr kleine Peaks im Vergleich zu vorher	Undichte Verbindungen in der Probenahmeleitung	Bringen Sie eine Kappe am Probeneingang an, dies verhindert, dass der Kolben die Hübe beendet, und er stoppt die Bewegung, was dazu führt, dass der Schrittzähler stagniert. Wenn sich der Kolben trotz Schließen des Probeneingangs leicht bewegt, liegt ein Leck vor und alle Anschlüsse an der Probenleitung müssen überprüft werden.
	Problem mit der Empfindlichkeit des Detektors	Führen Sie eine Kalibrierungsprüfung mit Kalibriergas durch
Keine Peaks in der Datendatei	Die Einstellung der Peakfenster wurde nicht gespeichert.	Stellen Sie Peakfenster auf einem Chromatogramm ein, stoppen Sie und starten Sie den Lauf nach dem Ende des Zyklus. Speichern Sie die Einstellungen, indem Sie das Programm im Programmbearbeitungsmodus unter einem eigenen Namen speichern. Das Speichern ist jedes Mal erforderlich, wenn die Fenstereinstellungen geändert werden.
Keine Peaks, flache Grundlinie	Das Probenahmeventil ist defekt	Prüfen Sie, ob der Trägergasdruck innerhalb der Spezifikation liegt. Überprüfen Sie den Probenventilblock auf der linken Seitenwand
	Säule ist gebrochen Keine Probenhübe programmiert	Säulensystem prüfen Ändern Sie das Programm oder laden Sie eine ältere Version von act_run.prg neu
	Injektionszeit zu kurz	Ist die Injektionszeit zu kurz eingestellt, gelangt nichts auf die Analysensäule und somit wird auch nichts detektiert
	10-Wege-Ventil blockiert oder defekt	Es wird keine Probe entnommen ODER die Probe wird nicht injiziert, da das Ventil nicht schaltet
	Die Anreicherungs heizung funktioniert nicht	Wenn die Anreicherungsheizung nicht funktioniert, können keine Kohlenwasserstoffe gemessen werden. Der PID sollte jedoch im Chromatogramm eine Senke erzeugen, wo die Luft durchkommt, und der FID sollte eine kleine Peak erzeugen, wenn die Luft durchströmt.

5.2.5 Instabile Retentionszeiten

Symptom	Möglicher Verdachtigt	Lösung
Der Peak wird falsch identifiziert, weil sich die Retentionszeit verschoben hat	Zu hohe Schwankungen der Raumtemperatur.	Stabilisieren Sie die Raumtemperatur so, dass sie innerhalb der angegebenen Maschinenspezifikationen liegt. Dies kann meistens erreicht werden, indem Sie sie aus dem Weg der Luftstrompfade bewegen, die durch Klimaanlagen erzeugt werden. In diesen Pfaden schwankt die Temperatur stark
	Ofentür defekt	Die Ofentür wird mit Druckventilen gesteuert, diese können fehlerhaft funktionieren und dazu führen, dass die Ofentür dauerhaft offen oder geschlossen ist. Das ist für die Messung nicht optimal. Die Ofentür kann auch zu viel Reibung haben (z. B. ihre Biegung) oder blockiert sein (z. B. Kabel)
	Die Retentionszeiten hängen von der Feuchtigkeit der Probe ab	Besonders bei Al2O3-Säulen. Die Probe muss mit dem Perma Pure Trockner gut getrocknet werden
	Schlechter oder schwieriger Saulentyp	Wasserempfindliche und gepackte Säulen sind empfindlicher als die Standard-Silikonsäule. Wählen Sie entweder eine andere Säule oder sorgen Sie dafür, dass das Trägergas immer auf der Säule bleibt und die Probe trocken ist
	Ofenthermoelement defekt	Überprüfen Sie die Temperatur mit einem anderen Temperatursensor und vergleichen Sie sie mit dem Messwert

5.2.6 Stabilität des Kalibrierergebnisses.

Symptom	Möglicher Verdachtigt	Lösung
Das PID Signal sinkt	Lampenausfall	Wenn sie sich innerhalb von 24 Stunden um mehr als 20 % ändert, ist es möglich, dass die Lampe undicht ist
	Kein Staubfilter am Probeneinlass	Reinigungssysteme können in solchen Fällen eine Erhöhung der Empfindlichkeit um einen Faktor von 30 % bis 90 % bewirken. Verwenden Sie nach der Reinigung Inline-Filter!
Die Reaktion ist instabil	Der Luft- oder Wasserstoffdruck hat sich geändert	Dies ändert die FID-Antwort. Auf Originaldruck zurücksetzen oder neu kalibrieren
Wiederholbarkeit ist schlecht	FID ist schmutzig	FID reinigen
Alarm nach automatischer Validierung	System wurde nicht kalibriert	Eine Kalibrierung muss abgeschlossen werden, bevor die automatische Validierung verwendet werden kann
Alarm nach automatischer Validierung	Analysator oder Kalibriergas instabil	Wiederholen Sie die automatische Validierung noch einmal, nachdem Sie den Kalibriergasanschluss überprüft haben
Die Reaktion nimmt über lange Zeit zu	Instabiles Kalibriergas oder ungeeigneter Druckminderer Schmutzige	Die Reproduzierbarkeit muss vor der Linearität getestet werden. Ist die Konzentration jedoch über einen längeren Zeitraum angestiegen, ist der Druckminderer bzw. Verdünner ungeeignet Wechseln Sie den Schlauch, insbesondere wenn der
	Probenahmeleitungen	Anstieg über einen längeren Zeitraum erfolgt ist.
der der Mehrpunktkalibrierung	Kein Gas bei stabiler Konzentration angeschlossen	wiederholen

5.2.7 Detektorsignal.

Symptom	Möglicher Verdachtigt	Lösung
Verrauschtes PID-Signal	Schlechte Verbindung in der PID	Demontieren Sie den PID und überprüfen Sie die Innen- und Außenseite der elektrischen Kontakte. Bauen Sie den PID richtig zusammen und überprüfen Sie die Schrauben
Verrauschtes FID-Signal	Schmutziger FID	Der FID hat tendenziell ein höheres Signal-Rausch- Verhältnis. Warten und reinigen Sie den FID. Wenn dies fehlschlägt, muss der FID möglicherweise ersetzt werden. Bitte achten Sie darauf dass die Feuchte in den Gasen im Gasgenerator genuegend entfernt werden.
Niedrige PID- Empfindlichkeit	Verschmutztes Fenster, abgenutzte Detektoroberseite oder alte Lampe	Reinigen Sie den PID und prüfen Sie, ob der Detektorkopf ausgetauscht werden muss. Als letzter Schritt kann die PID-Lampe ausgetauscht werden
Niedrige FID- Empfindlichkeit	Verhältnis von Luft zu Wasserstoff	Wenn das Verhältnis zu viel Wasserstoff enthält, ist die Empfindlichkeit zu gering, und entweder muss der Wasserstoff reduziert oder die Luft erhöht werden. Wenn der Gesamtfluss jedoch zu hoch ist, würde sich die Flamme aus dem Detektorbereich bewegen, und beide müssen reduziert werden, um die Flamme zurück in die Mitte der Detektorkammer zu bringen
Instabile PID- Empfindlichkeit	Lampe abgelaufen	Die Lampe hat eine Lebensdauer und muss regelmäßig ausgetauscht werden
Instabile FID- Empfindlichkeit	Instabile Wasserstoff oder Nullluft versorgung.	Ein Gasgenerator kann ein Druckschwankung in der Nullluft oder Wasserstoff haben und dass kann das FID Signal beeinflussen. Biite kontrollieren Sie ob der Generator gut funktioniert.

5.2.8 Linearität und Reproduzierbarkeit von Verbindungen.

Symptom	Möglicher Verdachtigt	Lösung
Nichtlineare Mehrpunktkalibrierung	Maschinenänderungen	Nach größeren Änderungen an der Ausrüstung (neue Lampe, Säule, Ventil oder Änderungen der gemessenen Komponenten) ist eine neue Autolinearisierung erforderlich
	Außerhalb des linearen Bereichs	Es gibt einen festgelegten linearen Bereich. Verwenden Sie die nichtlineare Mehrpunktkalibrierung, wenn ein größerer Bereich erforderlich ist
	Absorptionseffekte in Schläuchen	Reinigen oder ersetzen Sie den externen Schlauch. Wenn das Problem dadurch nicht behoben wird, reinigen oder ersetzen Sie auch die internen Schläuche. Das 10-Wege-Ventil kann auch mit verdünntem Ammoniak und destilliertem Wasser gereinigt werden. Vergessen Sie nicht, alles vor Gebrauch zu trocknen
	Reaktionseffekte in Schläuchen	Reaktive Kohlenwasserstoffe können mit Metall- und Polymeroberflächen reagieren. Womit sie reagieren, hängt von der Verbindung ab
Schlechte Linearität	Falsche Einstellungen	Verwenden Sie die zum Gerät gehörende GCX55id.txt und die autolin.dat. Die Linearität der Kalibrierung hängt von der Art der verwendeten Detektorzelle ab. Kopieren Sie diese Dateien oder Einstellungen nicht von einem anderen Computer
Die Reaktion nimmt über lange Zeit zu	Instabiles Kalibriergas oder ungeeigneter Druckminderer	Stellen Sie sicher, dass Sie die Reproduzierbarkeit vor der Linearität testen, aber wenn dies der Fall ist, ist der Druckregler oder Verdünner möglicherweise ungeeignet
	Schmutzige Probenahmeleitung	Wenn beim Kalibrieren die Konzentrationen längere Zeit ansteigen. Es ist an der Zeit, den Probenschlauch zu wechseln
Detektor Signal laesst nach	Lampenausfall	Wenn mehr als 20 % innerhalb von 24 Stunden auftreten, ist es möglich, dass die Lampe undicht ist und überprüft oder ersetzt werden muss
	Kein Staubfilter am Probeneinlass	Versuchen Sie, ein Reinigungssystem zu verwenden, dies könnte zu einer Erhöhung der Empfindlichkeit führen
Instabile Reaktion	Druckänderung von Luft oder Wasserstoff	Dies ändert die FID-Antwort. Auf Originaldruck zurücksetzen oder neu kalibrieren
Die Wiederholbarkeit von FID ist schlecht	FID ist schmutzig	Reinigen Sie den FID
Die Reaktion des FID ist sehr gering	Flamme außerhalb des Erfassungsbereichs	Auf die ursprünglichen Drücke zurücksetzen und neu starten
Die Reaktion des PID ist sehr gering	Geringe Empfindlichkeit.	Ersetzen Sie die PID-Lampe und/oder den PID-Kopf

Kalibrierungsergebnis ist niedrig	Leck im Probenahmesystem	Überprüfen Sie dies, indem Sie den Probeneingang mit einer Kappe blockieren und prüfen, ob die Probenhübe nicht abgeschlossen werden können. Wenn sich der Kolben immer noch leichtgängig bewegt, ist ein Leck vorhanden
	Leck im Ventil, Säulensystem, Detektor	Überprüfen Sie die Maschine auf Lecks, einschließlich Lecks an den elektrischen PID- Anschlüssen und der PID-Baugruppe

5.2.9 Peak integration.

Symptom	Möglicher Verdachtigt	Lösung
Die Integration deckt das Gebiet nicht vollständig ab	Zwei Peaks koeluieren	Der zweite Peak setzt bereits ein, bevor der erste Peak wieder auf der Grundlinie liegt. Versuchen Sie, die Einstellung zu verwenden, die die Integration mit einer geraden Grundlinie beginnt. Wenn das Problem weiterhin besteht, ist möglicherweise eine andere Spalte erforderlich
Keine Integration	Peak ist sehr breit und nicht integriert	Einstellung für die minimale Steigungsänderung ändern
Peak ist geteilt	Peak wird in viele kleine Peaks aufgeteilt	Überprüfen Sie, ob der Peak in dem Moment erscheint, in dem sich die Ofentür öffnet. In diesem Fall wird der Peak in der Säule geteilt, und die Öffnungszeit der Ofentür sollte angepasst werden.
Unbekannte Peaks	Geisterpeaks vom vorherigen Zyklus	Geisterpeaks sind Verbindungen, die auf die analytische Säule injiziert werden, aber nicht innerhalb der eingestellten Zykluszeit herauskommen. Verkürzen Sie die Injektionszeit, dann erreichen sie die analytische Säule nicht mehr. Oder sorgen Sie dafür, dass die Peaks in dem Lauf herauskommen, in dem sie auf das Säulensystem injiziert werden, indem Sie die Temperatur erhöhen, den Durchfluss erhöhen oder die Zykluszeit verlängern
Nicht alle Peaks sind integriert	Lange Zykluszeit und/oder verrauschte Grundlinie	Die Software hat die Grenze der Anzahl der Peaks erreicht. Ändern Sie die minimale Peakhöhe, um diesen Wert zu verringern

5.2.10 Temperatur alarm.

Die Vorkonzentration und der Ofen werden mehrfach überprüft. Nicht nur die Temperatur selbst wird von der Maschine überwacht, sondern auch die Zeit, die zum Aufheizen benötigt wird. Aus Sicherheitsgründen schaltet die Maschine diese aus, wenn sie nicht innerhalb des erwarteten Bereichs liegen, und die Maschine wartet auf einen manuellen Benutzereingriff.

Symptom	Möglicher Verdachtigt	Lösung
Temperaturfehler beim Start	Zu niedrige Raumtemperatur	Stellen Sie sicher, dass die Raumtemperatur innerhalb der Spezifikationen liegt. Auch die Wartezeit vor diesem Alarm konnte in den Optionen angepasst werden
Anreicherung Temperatur-fehler	Kein Aufheizen nach Wartung	Ein Anschluss könnte vergessen werden, überprüfen Sie alle Heizungs- und Thermoelementanschlüsse
	Heizt langsam auf	Stellen Sie sicher, dass die Raumtemperatur innerhalb der Spezifikationen liegt und kein Ventilator oder Klimaanlage auf die Maschine gerichtet ist. Diese verlangsamen den Erwärmungsprozess
	Wasser in gekühlter	Dies ist selten, aber wenn es aufgetreten ist,
	Anreicherung Aufheizen zu langsam	Wird ein Austausch empfohlen Möglicherweise liegt ein Problem in der Stromversorgung oder im Transformator vor. Überprüfen Sie die Eingangsspannung oder ersetzen Sie das/die Netzteil(e)
Ofentemperaturfehler	Bei zu hohe Raumtemperatur	Der Ofen heizt langsamer auf, wenn er nahe am Sollwert liegt, es könnte mehr Zeit hinzugefügt werden, oder es könnte ein zweiter Neustart versucht werden. Stellen Sie außerdem sicher, dass die Raumtemperatur innerhalb der Spezifikationen liegt, und senken Sie sie nach Möglichkeit. Eine Erhöhung des Sollwerts könnte auch eine Option sein.
	Heizt langsam auf	Die verwendete Heizungseinstellung konnte in den Einstellungen optimiert werden
	Kommunikationsproblem	Auch bei fehlerhafter Kommunikation erfolgt ein Temperaturalarm. Suchen Sie nach Problemen im PC oder auf der MX-Karte
	Ofenheizelement beschädigt	Wenn der Ofen zu stark aufgeheitzt wurde dann ist das Heizelement verformt und muss ausgetauscht werden. Wenn dass nicht ausgefuert wird ist ein Kurzschluss moeglich.
	Defektes Thermoelement	Bitte Kontrollieren Sie das Thermoelement oder ersaetzen Sie es.
	Die Ofentuer funktioniert nicht	Die Ofentür wird mit einem pneumatischen Kolben geöffnet und geschlossen. Wenn dies bricht, sich verbiegt, Druck verliert oder zu viel Reibung hat, funktioniert es möglicherweise nicht mehr. Bitte Überprüfen Sie, ob den Kolben oder die Schläuche blockiert wird.

5.2.11 Druck- und Durchflussalarm.

Symptom	Möglicher Verdachtigt	Lösung			
Druckalarm	Druck des Trägergases	Prüfen Sie, ob der Druck richtig eingestellt ist und			
	ausemaib des bereichs	ob der Versorgungsdruck innernatb der			
		Durchmesser und die Länge der			
		Versorgungsschläuche könnten ebenfalls Einfluss			
		darauf haben, und es ist auch eine gute Idee, auf			
		Undichtigkeiten zu prüfen			
	Drucksensor defekt	Der Sensor ist wahrscheinlich defekt, versuchen Sie			
		ihn auszutauschen			
Durchflussalarm	Problem im	Wenn die Strömung schwankt, sollte der			
	Massendurchflussregler	Trägergasdruck erhöht werden. Wenn der Alarm			
		vom MFC ausgelöst wird und das System vollständig			
		blockiert, wenden Sie sich an Ihren Händler oder an			
		Synspec			
	Leck im	Auf Lecks in der Trägergasversorgung prüfen			
	Trägergassystem				

5.2.12 Datenverarbeitung und Kommunikation.

Symptom	Möglicher Verdachtigt	Lösung				
Keine Peaks in der Datendatei	Peakfenster wurden nicht gespeichert	Stellen Sie die Peakfenster auf einem Chromatogramm ein, stoppen und starten Sie den Lauf, um diese Einstellungen zu speichern. Diese Einstellungen können auch im Programmbearbeitungsmodus in eine Datei gesichert werden. Es wird empfohlen, dies jedes Mal zu tun, wenn die Peakfenstereinstellungen geändert werden				
Der Analysator hat eine ganzzahlige Überlaufanzeige	Falsche Einstellung der Integrationsdämpfung	Verantwortlich für diesen Fehler ist die aktuelle Kombination der Einstellungen. Setzen Sie alle Integrationsdämpfungseinstellungen zurück und versuchen Sie es erneut				
Ganzzahliger Durchflussfehler nach automatischer Linearisierung	Die Autolinearisierung wurde nicht erfolgreich abgeschlossen	Überprüfen Sie die Peakfenstereinstellung und die Stabilitätsretentionszeit. Wiederholen Sie die automatische Linearisierung und prüfen Sie auf eine stabile Konzentration des Kalibriergases				
Periodisch (15 Minuten) Peaks und Einbrüche im Detektorsignal	Wasser in gekühlter Anreicherung	Das Vorhandensein von Wasser in der Falle führt zu negativen Einbrüchen des Detektorwerts und zu hohen positiven in Systemen mit gekühlter Anreicherung. Es wird empfohlen, die Spezifikationen einzuhalten und Wasser in der Probe zu vermeiden, aber alternativ könnte ein Trockner verwendet werden				
Alarm nach automatischer Validierung	System wurde nicht kalibriert	Vor einer Autovalidierung muss das System kalibriert werden				
Alarm nach auto Validierung	Instabiler Analysator oder Kalibriergas	Führen Sie nach Überprüfung der Kalibriergasanschlüsse die automatische Validierung noch einmal durch				
Die Nachbearbeitung funktioniert nicht	Nicht alle erforderlichen Dateien sind vorhanden Alte Software wird auf neuen Daten verwendet Neue Software wird auf	Alle erforderlichen Informationen müssen kopiert werden, befolgen Sie die Wiederaufbereitungsschritte Alte Software kann neue Daten nicht erneut verarbeiten, verwenden Sie stattdessen die neue Software Version Daten, die mit älteren Versionen erzeugt wurden.				
	alten Daten verwendet	können nicht immer nachbearbeitet werden. Bei Bedarf wird empfohlen, ältere Versionen der ausführbaren Datei aufzubewahren, diese können jedoch auch von Ihrem Distributor oder Synspec bezogen werden				
Fehlende Daten und/oder Bluescreen	Fehlfunktion des Computers oder der Stromversorgung	Die Protokolldatei kann auf automatischen Neustart und dessen möglichen Auslöser überprüft werden. Beobachten Sie außerdem das System für das mögliche Problem, das behoben oder ersetzt werden muss, teilweise das System-Motherboard, Laufwerk und Prozessor. Alternativ kann die Stromversorgung auf instabile Spannung überwacht werden				
Zufällige irrelevante Fehlermeldungen	Internes Kommunikationsproblem	Biite kontrolieren Sie die Bekabelung im GC.				

6. Schlussbemerkungen.

6.1 Außerbetriebnahme.

Die Synspec-Analysatorserie hat eine Lebensdauer von über 10 Jahren, und es werden große Anstrengungen unternommen, um Ersatzteile und Support verfügbar zu halten. Wenn ein altes Analysegerät nicht mehr benötigt wird oder leistungsschwach ist, ziehen Sie in Betracht, es gegen ein neueres Modell zu einem Preisnachlass einzutauschen.

Der Analysator sollte ordnungsgemäß außer Betrieb genommen werden. Da das System nur ROHSkonforme Teile enthält, kann es an das örtliche Recycling- oder Abfallsammelzentrum für Elektrogeräte abgegeben werden.

6.2 Dieses Handbuch.

Das Handbuch ist auf Papier erhältlich und wird mit jedem Analysator geliefert. Auf dem Analysator ist eine digitale Version gespeichert.

Synspec-Analysatoren werden ständig verbessert und an neue Anforderungen und Möglichkeiten angepasst. Es können Teile in diesem Handbuch vorhanden sein, die neuer oder älter sind und möglicherweise nicht zutreffen, wenn dadurch Probleme auftreten; Bitte kontaktieren Sie Synspec mit einer Beschreibung des Problems und allen anderen relevanten Informationen wie Analysatortyp und ID.

Es wurde viel Sorgfalt darauf verwendet, Fehler in diesem Handbuch zu vermeiden, aber im Zweifelsfall wenden Sie sich an Synspec. Bei Fragen zu Gewährleistung und Haftung siehe auch unsere Verkaufsbedingungen auf unserer Website.

6.3 Windows-Passwort.

Der GC startet automatisch mit dem Standard-Benutzerkonto. Name des Standardbenutzerkontos: GCX55 Passwort: GCX55.

Um Änderungen an Windows-Einstellungen vorzunehmen oder zusätzliche Software zu installieren, wird ein Benutzer mit Administratorrechten benötigt. Kontoname des Administrators: GCADMIN Passwort: **GCADMIN**

EINLEITUNG

Das Hessen-Bayern- oder Bayern-Hessen-Protokoll kann in der Synspec GC-Software verwendet werden, um die Konzentration von Messwerten mit hilfe eines Datenloggers abzurufen.

Die Kommunikation kann über eine serielle RS232-Verbindung oder über eine Ethernet-Verbindung (TCP-IP) erfolgen. Die GC-Software kann gleichzeitig über beide Kanäle kommunizieren. RS232-Einstellungen können in der GC-Software vorgenommen werden; Die TCP-IP-Einstellungen werden jedoch in der Datei GCxxx_ID.txt vorgenommen.

EINRICHTEN DER ETHERNET-VERBINDUNG U. EIN PRÜFFENSTER FÜR RS232 ODER TCP-IP

Die Einstellung der Ethernet-Verbindung muss in der Datei GCxxx_ID.txt vorgenommen werden. Fügen Sie die folgenden Zeilen hinzu: TCPACTIVE = TRUE

//Datenlogger IP Adresse: TCP-IP1 = 192.168.0.144 //localhost IP Adresse: TCP-IP2 = 127.0.0.1 //Zu verwenden Modbus-TCP-Port: TCP-PORT = 9880 // Zur Überprüfung der TCP-Kommunikation: SHOWTCP = TRUE // Zur Überprüfung der RS232-Kommunikation: RS232SPYWINDOW = TRUE

EINRICHTEN DER PROTOKOLL IM GC SOFTWARE

Starten Sie die GC-Software. Wenn SHOWTCP = TRUE und RS232SPYWINDOW = TRUE in der Datei GCxxx_ID.txt vorhanden sind, werden die Spionagefenster eingeblendet und können zur Überprüfung der Kommunikation verwendet werden:

S TCP spy window - 🗆 🗙	S RS232 spy window - 🗆 🗙
Own IP 192.168.200.104 Port 9880	
TCP Server activated HESSEN/BAYERN protocol active HESSEN/BAYERN protocol active HESSEN/BAYERN protocol active The IP address of the GC and the Hessen-Bayern port address will be shown. Port number of Hessen Bayern communication over TCP-IP is 9880.	Received 6 bytes at: 194046 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194048 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194050 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194052 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194054 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194054 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194058 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194058 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194058 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194058 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194058 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194058 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194058 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194100 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194100 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194100 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Received 6 bytes at: 194100 Command received : DAU04 Answer : MD03 000 +4558+01 7E 3F 123 000000 001 +5075+01 7E 3F Command received : DAU0
Close Clear Save log	Close Clear Save log

S:\Synspec\R&D\TECHNOTES\T_NOTES

DATEN KOMMUNIKATION HESSEN-BAYERN PROTOKOLL

So stellen Sie das Hessen-Bayern-Protokoll in der GC-Software ein: Programm bearbeiten, Einstellungen, Datenlogger-Kommunikation:

Stellen Sie das Protokoll auf Hessen/Bayern ein.

Für die serielle Verbindung: Der serielle Port muss auf Aktiv gesetzt werden.

Die Einstellungen für den COM-Port werden automatisch auf 1200, 7 Bit, Even Parity und 1 Stopbit gesetzt. Es könnte jedoch auch 9600 Baud verwendet werden; Stellen Sie nur sicher, dass sowohl in der GC-Software als auch in der Datenlogger-Software dieselbe Baudrate eingestellt ist.

SYNSPEC

Wenn der serielle Anschluss ausgewählt ist, z. B. COM1, versucht die GC-Software diesen Anschluss zu verwenden. Wenn dies gelingt, wird der Port von der GC-Software gesperrt und als COM1 (n.a.) angezeigt.

Wählen Sie die gewünschten Laufstatusbits und Fehlerstatusbits in der GC-Software aus:

Datalogger Laufstatus-bits	Datalogger Fehlerstatus-bits				
NICHT	NICHT				
BIT 1 🗌 Steuerdruck zu niedrig	BIT 9 🗆 Lauf aktiv 💌				
BIT 2 Lauf aktiv Kalibrier Modus	BIT 10 🗆 Lauf aktiv 💌				
BIT 3	BIT 11 🗖 Lauf aktiv 👻				
BIT 4	BIT 12 🗆 Lauf aktiv				
BIT 5 Kalibrierdaten am Ausgang Start neuer Lauf	BIT 13 🗆 Lauf aktiv 💌				
BIT 6 🗆 Lauf aktiv 💌	BIT 14 🗆 Lauf aktiv 💌				
BIT 7 🗆 Lauf aktiv 💌	BIT 15 🗆 Probenahme Fehler 💌				
BIT 8 🗆 Steuerdruck zu hoch 💌	BIT 16 🗖 Fluß zu niedrig 💌				
✓ <u>O</u> K X Cancel Ø <u>H</u> elp	✓ <u>O</u> K X Cancel <a>(2) <u>H</u> elp				

Jetzt antwortet der GC auf serielle oder Ethernet-Anfragen unter Verwendung des Hessen-Bayern-Protokolls.

TEST DER HESSEN-BAYERN-KOMMUNIKATION MIT EASYCOM DATALOGGER

Um die Hessen-Bayern-Kommunikation zu testen, senden Sie vom Datenlogger-PC einen Befehl an den GC. In diesem Beispiel wird das Datenlogger-Programm Easycom verwendet.

SYNSPEC

Von den ersten 3 Peaks werden die Konzentrationswerte in der Easycom Datenlogger-Software abgerufen. Dies ist die Standardeinstellung in GC Software für das Hessen-Bayern-Protokoll. Wenn mehr Peaks abrufbar sein müssen, kann die voreingestellte Anzahl an Peaks mit folgender Zeile in der Datei GC1055_ID.txt erhöht werden: zum Beispiel HBMAXCOMP = 5.

EasyComp Demo Version 20011118 09:41:59 Station LASO						_				
Password Parameter Display Calibration Graphic Single Measurement Language										
Name	Units	Data	Data	Data	OStat	EStat	Validity	Average	% Valid	Average
		current	corrected	checked	current	current	current	5s	5 s	1 Min
Ben	µg/m³	45,6	45,6	45,6	10000000	00000000	Valid	45,6	100	45,6
Tol	µg/m³	50,8	50,8	50,8	10000000	00000000	Valid	50,8	100	50,8
EBen	µg/m³	57,8	57,8	57,8	00000000	00000000	Valid	57,8	100	57,8
mXyl	µg/m³	0,0	0,0	0,0	00000000	00000000	Invalid	0,0	0	0,0
oXyl	µg/m³	0,0	0,0	0,0	00000000	00000000	Invalid	0,0	0	0,0

Die Konzentration der ersten 3 Peaks ist in der Easycom Datenlogger-Software verfügbar.

Ende dieses Dokuments.